
Seventh International Conference on
Computational Fluid Dynamics (ICCFD7),
Big Island, Hawaii, July 9-13, 2012

ICCFD7-1403

New explicit Runge-Kutta methods for the

incompressible Navier-Stokes equations

B. Sanderse∗,∗∗ and B. Koren∗,∗∗∗

Corresponding author: Barry.Koren@cwi.nl

∗ Energy research Centre of the Netherlands (ECN), Petten, The Netherlands.
∗∗ Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands.

∗∗∗ Eindhoven University of Technology, Eindhoven, The Netherlands.

Abstract: New explicit Runge-Kutta methods are presented for the time integration of the in-
compressible Navier-Stokes equations. The differential-algebraic nature of these equations requires
that additional order conditions are satisfied compared to the classical order conditions for ordinary
differential equations. The methods presented in this work are high-order accurate for both velocity
and pressure, even when the boundary conditions or the mesh are time-dependent. Computations
for an actuator disk in a time-dependent inflow support the correctness of the analytically derived
methods.

Keywords: Incompressible Navier-Stokes, Time integration, Temporal accuracy, Runge-Kutta.

1 Introduction

In this paper we discuss the application of explicit Runge-Kutta methods to the time discretization of the
incompressible Navier-Stokes equations. Explicit Runge-Kutta methods are a popular choice for the time
discretization of the Navier-Stokes equations, because they are cheap compared to implicit methods if flow
problems are not stiff, which is the case for convection-dominated flows not involving solid boundaries. Com-
pared with (explicit) multi-step methods, Runge-Kutta methods have in general better stability properties,
do not have a start-up problem, and easily allow for adaptive time stepping, although they generally require
the solution to a Poisson equation for the pressure at each stage of the Runge-Kutta method. Examples of
Runge-Kutta methods applied to the incompressible Navier-Stokes equations are Wray’s third-order method
(sometimes combined with an implicit method for the diffusion terms) [1, 2, 3, 4], a third-order accurate
semi-implicit method [5], and the classic fourth-order method [6, 7]. These three- and four-stage methods
have the favorable property for convection-dominated flows that the linear stability domain contains part of
the imaginary axis.

The application of explicit Runge-Kutta methods to the incompressible Navier-Stokes equations is not
straightforward because of the differential-algebraic nature of the equations. It is common practice to
explicitly advance the velocity at each stage as if the discretized equations are a system of ordinary differential
equations, and subsequently solve a Poisson equation for the pressure to make the velocity field divergence-
free. However, it is not clear if and how this approach influences the temporal order of accuracy of the velocity
and pressure. The accuracy of the velocity is often silently assumed to be unaffected by the differential-
algebraic nature of the incompressible Navier-Stokes equations, and the temporal accuracy of the pressure is
often not reported. A temporally accurate pressure is however of interest in many flow simulations, such as
those involving unsteady lift and drag computations or fluid-structure interactions. We therefore thoroughly
analyze the accuracy of both velocity and pressure by applying the convergence theory developed for index 2
differential algebraic equations [8, 9] to the incompressible Navier-Stokes equations. We discuss the treatment
of unsteady boundary conditions and time-varying meshes, which has not been clearly reported in literature
so far, and investigate if they influence the order of accuracy.

1

The outline of this paper is as follows. First, in section 2 we develop a general formulation for explicit
Runge-Kutta methods applied to the incompressible Navier-Stokes equations, which includes the case of
unsteady boundary conditions for the continuity and momentum equations. Subsequently, in section 3 we
evaluate the order conditions for velocity and pressure, and in section 4 we propose different methods to
compute a high-order accurate pressure. In section 5 we show the results of two test cases which confirm
our theoretical findings.

2 Explicit Runge-Kutta methods applied to incompressible Navier-

Stokes

2.1 Governing equations

The governing equations for incompressible flow are the conservation of mass and momentum,

∇ · u = 0, (1)

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2

u, (2)

collectively called the incompressible Navier-Stokes equations. For the spatial discretization of (1)-(2) we
employ a second-order finite volume method on staggered Cartesian grids, similar to the method of Harlow
and Welch [10]. The results from this paper are equally valid though for finite difference and finite element
methods, as long as the spatial discretization leads to a semi-discrete system (method of lines) that can be
written as:

Mu(t) = r1(t), (3)

Ω u̇(t) = −C(u(t)) + νDu(t)−Gp(t) + r2(u(t), t), (4)

supplemented with suitable initial conditions. M , C, D and G represent the discrete divergence, convection,
diffusion and gradient operators, respectively. r1(t) is a vector with boundary conditions for the continuity
equation and r2(u, t) is a vector with boundary conditions and forcing terms for the momentum equation.
Ω is a matrix with on its diagonal the finite volume sizes. In finite element methods this is the mass matrix.

In contrast to the compressible Navier-Stokes equations, equations (3)-(4) are not a set of ordinary
differential equations (ODEs), but a set of differential algebraic equations (DAEs). This is due to the
incompressibility constraint (3). The index of this DAE system is 2 (see e.g. [8, 9, 11]): u plays the role
of the differential variable, and p the role of the algebraic variable. Following the literature on DAEs, the
semi-discrete equations are written in short as

0 = g(u, t), (5)

u̇ = f(u, p, t), (6)

where g(u, t) = Mu − r1(t), f(u, p, t) = F (u, t)−Gp and F (u, t) = −C(u) + νDu + r2(u, t). Ω−1 has been
absorbed in the definition of C, D, G and r2. The explicit presence of unsteady boundary conditions for
the divergence equation, r1(t), is often omitted in literature, but will turn out to be an important factor
when deriving order conditions. An example of a nonzero r1(t) is a time-varying inflow condition such as a
turbulent inflow field.

An instantaneous equation for the algebraic variable, the pressure, is found by applying the divergence-
free constraint to the momentum equation:

Lp =MF (u, t)− ṙ1(t), (7)

where L = MG and we have used that M is not depending on t. For more information on time-dependent
operators we refer to [12]. The pressure can be eliminated from the system of equations, by solving equation
(7) and inserting it into (6):

u̇ = PF (u, t) +GL−1ṙ1(t), (8)

2

where the projection operator P , defined by

P = I −GL−1M, (9)

projects velocity fields onto the space of divergence-free fields; the divergence of this projection is zero
(MP = 0). Although (8) is now an ODE to which a Runge-Kutta method can be applied, one should not

start with equation (8). The differentiation of the constraint, necessary to arrive at (8), effectively lowers the
index of the DAE system, and upon discretization its solutions do not necessarily satisfy the constraint (5).
It is therefore desirable to discretize the original DAE system (5)-(6) (the one with highest index), because
its solutions will satisfy all the derived lower index systems [13].

The initial conditions at t = t0 should be consistent with equations (5)-(6) and (7):

Mu0 = r1(t0), (10)

Lp0 =MF (u0, t0)− ṙ1(t0). (11)

Equation (11) expresses that the initial pressure cannot be chosen freely, but has to be calculated based on
u0.

2.2 Explicit Runge-Kutta methods

Application of an explicit Runge-Kutta method to DAE systems is not always straightforward. A guideline
is given by the theory of Hairer et al. [8], who call Runge-Kutta methods for index 2 DAEs half-explicit

Runge-Kutta methods. Application of a half-explicit Runge-Kutta method to equations (5)-(6) leads to the
following method:

Ũi = un +∆t

i
∑

j=1

ãij(F̃j−1 −Gψ̃j), (12)

MŨi = r1(t̃i). (13)

Here we have introduced the shifted Butcher tableau Ã,

Ã =











a21 0 . . . 0
...

. . .
. . .

...
as1 . . . as,s−1 0
b1 . . . bs−1 bs











, (14)

since the first stage of a Runge-Kutta method is trivial for explicit methods, and we employ the convention

c̃i =
i

∑

j=1

ãij . (15)

Furthermore, we have the shifted vectors

Ũ =











Ũ1

...

Ũs−1

Ũs











=











U2

...
Us

un+1











, p̃ =











p̃1
...

p̃s−1

p̃s











=











p2
...
ps
pn+1











. (16)

Ũi and un are approximations to the exact values u(t̃i) and u(tn), respectively, with t̃i = tn + c̃i∆t and
F̃j = F (Ũj , t̃j). A = (aij), bi and ci are the coefficients of the Runge-Kutta method. The pressure-like
variable ψ is introduced to distinguish it from the pressure p, which satisfies

Lp̃i =MF̃i − ṙ1(t̃i). (17)

3

This equation is generally not satisfied by ψ.
Now the Runge-Kutta method has been applied, we can again eliminate the pressure, leading to

Ũi = un +∆t
i

∑

j=1

ãijPF̃j−1 +GL−1(r1(t̃i)− r1(tn)). (18)

Since MP = 0, equation (18) satisfies MŨi = r1(t̃i) at all intermediate stages. However, if a Runge-Kutta
method were applied to equation (8) instead of equations (3)-(4), the last term in (18) would change to
GL−1

∑

j aij ṙ1(tj), and the constraint is only satisfied if ṙ1(t) = 0 (both formulations are equal in that
case). Again, we stress that the Runge-Kutta method should be applied to the DAE of highest index.

Upon substituting P = I − GL−1M into (18) we obtain a formulation that can be used to define a
new pressure-like variable (which will be used later to construct a higher order accurate pressure). When
comparing

Ũi = un +∆t

i
∑

j=1

ãijF̃j−1 −GL−1



∆t

i
∑

j=1

ãijMF̃j−1 − (r1(t̃i)− r1(tn))



 (19)

to the ‘exact’ equation for the pressure at each stage, equation (19) is rewritten as the following two steps:

Ũi = un +∆t

i
∑

j=1

ãij F̃j−1 − c̃i∆tGφ̃i, (20)

with the new pressure-like variable φ̃i defined by

Lφ̃i =

i
∑

j=1

1

c̃i
ãijMF̃j−1 −

r1(t̃i)− r1(tn)

c̃i∆t
. (21)

Equation (21) is simply the divergence of (20) supplemented with the additional information MŨi = r1(t̃i).
Each φ̃i is a Lagrange multiplier to make Ũi divergence free and each Ũi is independent of the value of φ̃j
for j 6= i. This is the advantage of using φ instead of ψ. It should be stressed that the presence of the c
coefficients in the pressure term is not necessary to obtain the correct velocity field. The reason to introduce
the c coefficients is that for explicit methods it yields a φ̃i which is a consistent approximation to p̃i. The
relation between ψ and φ is given by

Ãψ̃ = diag(c̃1, . . . , c̃s)φ̃. (22)

The use of φ instead of ψ limits the accuracy of the pressure to first order. When comparing equation
(21) to (17), the first term on the right side of (21) is recognized as an approximation to MF̃i and the second
term as an approximation to ṙ1(t̃i). The second term is clearly a first-order approximation, since

ṙ1(t̃i) =
r1(t̃i)− r1(tn)

c̃i∆t
+O(∆t). (23)

The first term is also a first-order approximation, which we show by following an argument employed in
[14, 15]. F̃i in (17) is F evaluated at (Ũi, t̃i), whereas

∑i
j=1

1

c̃i
ãijF̃j−1 is an approximation to the average

value of F from tn to t̃i. Assuming that F is continuous over the interval [tn, t̃i], this average equals the
value of F at some point t̂ ∈ [tn, t̃i] (according to the integral version of the mean value theorem) and as
such is an O(∆t) approximation to F̃i:

MF̃i =

i
∑

j=1

1

c̃i
ãijMF̃j−1 +O(∆t). (24)

As a consequence the Lagrange multiplier φ is a first-order approximation to the pressure p:

φ̃i = p̃i +O(∆t). (25)

4

Of course, by virtue of the midpoint method, φi is a second-order approximation to the pressure at tn+
1

2
ci∆t,

as long as the stage order of the method is at least 2 (this will be detailed in section 4). We will call the
approach, where one uses φ̃s as approximation to pn+1, the ‘standard’ approach. The first-order accuracy
of this approach is independent of the particular coefficients of the Runge-Kutta method. It results from
the fact that (21) contains an approximation to the integral

∫

Fdt, whereas (17) contains F evaluated at a
certain time instance. This is because the pressure has an instantaneous character: its value is such that
the velocity field is divergence free at each time instant, and is independent of the pressure at any previous
time. The equation for the velocity is, on the contrary, an evolution equation.

By combining the different φi values (e.g. by using ψ) one can obtain a better than first order accurate
approximation to pn+1. This poses certain requirements on the coefficients of the Butcher tableau, which
will be detailed in sections 3 and 4.

To conclude, we write down the solution algorithm that we use in practice, obtained by rewriting (20)-
(21):

Ṽi = un +∆t

i
∑

j=1

ãijF̃j−1, (26)

Lφ̃i =
1

c̃i∆t
(MṼi − r1(t̃i)), (27)

Ũi = Ṽi − c̃i∆tGφ̃i, i = 1, 2 . . . s, (28)

optionally followed by equation (22). This sequence of first computing a tentative velocity, then the pressure,
and finally correcting the tentative velocity is similar to fractional step methods (see e.g. [14]). However, in
fractional step methods the diffusive and/or convective terms are often taken implicitly, and a splitting error
then results from uncoupling the solution of velocity and pressure. Here all terms are handled explicitly
(except the pressure) and consequently there is no splitting error involved. It is therefore unnecessary to
solve a coupled system for Ũi and φ̃i. The half-explicit nature of the method is now clear: the differential
variable is advanced with an explicit method (equations (26) and (28)) while the algebraic variable is handled
implicitly (equation (27)). The implicit equation for the pressure has to be solved at each stage, so in total
this results in s Poisson equations. The resulting Ũs = un+1 and φ̃s = φn+1 (or ψ̃s) are approximations to
u(tn+1) and p(tn+1). The order of accuracy of ψ̃s and Ũs will be considered next.

3 Order conditions

3.1 A short introduction to trees

For general index 2 DAEs of the form (5)-(6) the classical order conditions (‘classical’ referring to non-stiff
ODEs, see e.g. [16]) for the coefficients of the Butcher tableau are not sufficient to guarantee the correct
order of accuracy for both the differential and algebraic variable. The work of Hairer et al. [8] and Hairer
and Wanner [9] provides local and global error analyses for index 2 DAEs and identifies in which cases order

reduction can occur. We focus on the local error, because for half-explicit methods the error propagation
from local to global error is the same as for non-stiff ODEs, see [17].

For Runge-Kutta methods applied to ODEs of the form u̇ = f(u), the local error can be investigated by
expanding both the exact and numerical solution in a Taylor series and comparing until which order they
agree. This requires that ü,

...
u , etc. are written in terms of f and its derivatives:

u̇ = f, ü = fuf,
...
u = fufuf + fuu(f, f). (29)

Since f and u are vectors, the first derivatives in this expression should be interpreted as Jacobian matrices,
the second derivatives as bilinear maps, and (f, f) as a tensor product. The number of elementary differentials
that appear in this process grows rapidly when high orders are compared. With each differential there is
an associated order condition. An efficient way to handle the order conditions for ODEs was introduced by
Butcher with the concept of rooted trees [16, 18]. Given a certain tree, the elementary differential and the

5

order condition corresponding to it can be easily written down. For example, (29) becomes in terms of trees

u̇ = ü =
...
u = + (30)

The order conditions for these trees are the well-known third order conditions

∑

bi = 1,
∑

bici =
1

2
,

∑

biaijcj =
1

6
,

∑

bic
2
i =

1

3
. (31)

In all cases, the summation is over all indices present in the summand.
The extension of the analysis with trees to DAEs was done by Hairer et al. [8] and will be used here.

Hairer et al. [8] consider the autonomous index 2 DAE

0 = g(u), (32)

u̇ = f(u, p). (33)

The non-autonomous system (5)-(6) can be written in this form by adding ṫ = 1 so that equations (32)-(33)

hold by redefining u :=

(

u
t

)

and f :=

(

f
1

)

. In the Taylor expansion of the exact and numerical solution, ṗ,

p̈, . . . appear next to u̇, ü, Here we list the first few derivatives (see [8, 9]):

u̇ = f, (34)

ṗ = (−gufp)
−1(guu(f, f) + gufuf), (35)

ü = fuf + fp(−gufp)
−1(guu(f, f) + gufuf). (36)

For DAEs, the number of differentials grows even more rapidly for higher order derivatives. Trees still provide
a compact way to represent these derivatives, when extended to contain both meagre (solid) and fat (open)
vertices:

u̇ = ṗ = + ü = + + (37)

As an example, the above trees correspond to the following order conditions:

u̇ :
∑

bi = 1, (38)

ṗ :
∑

biωijωjkc
2
k = 2,

∑

biωijωjkaklcl = 1, (39)

ü :
∑

bici =
1

2
,

∑

biωijc
2
j = 1,

∑

biωijajkck =
1

2
, (40)

the summation being again over all indices. We see that next to the classical order conditions (represented
by trees with only meagre vertices) additional order conditions appear, corresponding to trees with fat
vertices, which include the inverse of matrix A (ωij denotes the entries of A−1). The order conditions for
the p-component are especially difficult due to the presence of (A−1)2.

Fortunately, some of these additional trees do not pose additional constraints on the coefficients because
they reduce to classical order conditions. For example, the last condition in equation (40) can be written as

∑

biωijajkck = bTA−1Ac =
∑

bici =
1

2
, (41)

6

so it reduces to the classical second-order condition. The additional order conditions that cannot be simplified
to classical order conditions are of interest to us. To find these remaining conditions we used the software
described in [19]. We found that for the u-component there is no additional tree for order 1, but there is 1
for order 2, there are 4 for order 3 and 17 for order 4. For the p-component there are 2 trees for order 1, 6
for order 2, 21 for order 3, and 81 for order 4. This large number of additional order conditions can still be
considerably reduced when taking into account the specific form of the Navier-Stokes equations.

We stress that the construction of order conditions outlined above holds for general (implicit and explicit)
Runge-Kutta methods. For half-explicit methods the construction of the order conditions changes slightly
since we work with the shifted Butcher tableau Ã instead of A: if a meagre vertex follows a fat vertex then
ajk changes to ãjk (or cj to c̃j).

3.2 Application to the incompressible Navier-Stokes equations

For the spatially discretized Navier-Stokes equations we know that f(u, p, t) = F (u, t) − Gp, which means
that fp = G is a constant matrix. All derivatives of fp, such as fpu, fpp, etc., are therefore zero, and trees
which have a meagre vertex as root or as branch and connected to it a fat vertex and at least one other
meagre or fat vertex need not be considered. We note that higher derivatives of gu, such as guu, do not

vanish. This is due to the fact that in the case of non-autonomous systems, guu consists of guu, gut and gtt.
guu and gut are zero for the Navier-Stokes equations, but gtt = r̈1(t) is in general not, and therefore trees
that have a fat vertex with more than one meagre vertex connected to it do not vanish. The special case of
ṙ1(t) = 0, so that gtt = 0, will be discussed in section 4.3. After removing all trees that contain derivatives
of fp, and simplifying the resulting order conditions, it turns out that all additional order conditions for the
velocity are trivially satisfied, at least up to and including order 4 [12]. For the pressure, on the other hand,
a number of additional order conditions remains; these are shown in table 1. Only certain Butcher tableaux
will yield a higher-order accurate pressure - this will be detailed in section 4.

A more general case, where the gradient operator G(t) is time-dependent, can be treated in an analogous
fashion. Derivatives of fp with respect to u, such as fpu, do not vanish. Such a time-dependent gradient
operator can appear on meshes that are changing in time. The additional trees that result when fp is not
constant but depends on time leads to the trees shown in table 2. In contrast to the case fp = constant,
the order conditions associated with these trees do not reduce to classical order conditions. This table is
similar to table 1 in [17], but with the difference that in that work trees containing fpp, fppp and fppu are
also present. We present this table here as a reference for practitioners of Runge-Kutta methods for time
integration of the incompressible Navier-Stokes equations on time-varying meshes. For a third order method
there is one additional tree, denoted by number 7. Evaluating the condition associated with this tree for
a three-stage method, together with the four classical order conditions for third order methods, leads to a
solution family with c3 = 1, and c2 as a free parameter (c2 6= 0, c2 6= 2

3
, c2 6= 1):

a21 = c2 a31 =
3c2 − 3c22 − 1

c2(2− 3c2)
a32 =

1− c2
c2(2− 3c2)

, (42)

b1 =
3c2 − 1

6c2
b2 =

1

6c2(1− c2)
b3 =

2− 3c2
6(1− c2)

. (43)

This family excludes Wray’s popular third-order method [2]. Wray’s method reduces to second order for
time-dependent operators, such as moving meshes, and is therefore not recommended in this case.

For a fourth order method six additional trees appear due to the time dependency of G. It is proven in
[17] that the order condition corresponding to tree number 12 cannot be satisfied with a four-stage, fourth-
order method. An example of a five-stage, fourth-order method that satisfies the conditions corresponding
to trees 7-12 is the HEM4 method [17]. It does not satisfy the conditions corresponding to trees 3 and 4, so
it is second order accurate for the pressure.

Note that the time-dependence of fp also leads to additional trees for the pressure, next to those already
mentioned in table 1. They are of order 2 or higher.

7

Tree Order of tree Condition Simplifies to Differential

1. 1
∑

biω̃ijω̃jk c̃
2
k = 2

∑

ω̃sic̃
2
i = 2 (−gufp)

−1guu(f, f)

2. 1
∑

biω̃ijω̃jk ãklcl = 1 cs = 1 (−gufp)
−1gufuf

3. 2
∑

biω̃ijω̃jk c̃kãklcl =
3

2

∑

ω̃sic̃iãijcj =
3

2
(−gufp)

−1guu(f, fuf)

4. 2
∑

biω̃ijω̃jk c̃
3
k = 3

∑

ω̃sic̃
3
i = 3 (−gufp)

−1guuu(f, f, f)

5. 2
∑

biω̃ijω̃jkãklalmcm = 1

2

∑

asici =
1

2
(−gufp)

−1gufufuf

6. 2
∑

biω̃ij ω̃jkãklc
2
l = 1 c2s = 1 (−gufp)

−1gufuu(f, f)

Table 1: Trees and order conditions for p-component up to and including order 2 when fp = constant.

8

Tree Order of tree Condition Differential

7. 3
∑

biciω̃ij c̃
2
j = 2

3
fpu(f, (−gufp)

−1guu(f, f))

8. 4
∑

biaijcjω̃jk c̃
2
k = 1

6
fufpu(f, (−gufp)

−1guu(f, f))

9. 4
∑

biaijcjω̃ik c̃
2
k = 1

4
fpu(fuf, (−gufp)

−1guu(f, f))

10. 4
∑

biciω̃ij c̃j ãjkck = 3

8
fpu(f, (−gufp)

−1guu(f, fuf))

11. 4
∑

biciω̃ij c̃
3
j = 3

4
fpu(f, (−gufp)

−1guuu(f, f, f))

12. 4
∑

bic
2
i ω̃ij c̃

2
j = 1

2
fpuu(f, f, (−gufp)

−1guu(f, f))

Table 2: Additional trees and order conditions for u-component up to and including order 4 when fp is a function of t.

9

4 The accuracy of the pressure

4.1 Single Butcher tableau for velocity and pressure (Method 1)

In section 2.2 we mentioned that φ̃s is a first order approximation to pn+1, but that ψ̃s can be better than first
order accurate. We call this the ‘single Butcher tableau’ approach, a name that will be explained in section
4.2. Here we evaluate which order conditions should be satisfied to achieve this. Some of the order conditions
in table 1 can be simplified, but in contrast to the u-component, additional order conditions remain, even
for a second-order method. This is not a surprise when considering that the Lagrange multipliers φ and ψ
are of a different nature than the pressure p (integral versus point value).

We should note that all additional order conditions for the pressure can be circumvented entirely by
solving an additional Poisson equation, equation (7), at tn+1:

Lpn+1 =MFn+1 − ṙ1(tn+1). (44)

Given an r-th order accurate velocity field un+1, the resulting pressure pn+1 is of the same order of accuracy.
However, there are two issues in solving equation (44). Firstly it is required that r1(t) can be differentiated
(analytically or numerically), something which is not required in the computation of u and φ. In many
practical computations, for example involving a prescribed turbulent inflow, ṙ1(t) might not be available.
Secondly, solving equation (44) amounts to the solution of an additional Poisson equation, which is compu-
tationally costly. We will therefore look at the additional conditions of table 1, which, when satisfied, give
a higher order accurate pressure without solving equation (44).

4.1.1 Two-stage methods

For two-stage, second-order methods we have the classical conditions b1 + b2 = 1 and b2c2 = 1

2
. For a

second-order accurate pressure the conditions corresponding to trees 1 and 2 have to be satisfied as well.
The additional order condition corresponding to tree 1 can be written as

a21 − b1c2
a21b2

= 2. (45)

Combining this condition with the order condition for tree 2 (c2 = 1) and the classical order conditions leads
to a contradiction. It is therefore not possible to obtain better than first-order accuracy for the pressure
with a two-stage explicit method.

4.1.2 Three-stage methods

Butcher [16] lists three cases for which a three-stage, third-order explicit method exists. Only in the ‘case
I’ family there is a solution that allows c3 = 1 (the condition corresponding to tree 2), which is the same as
solution family (42)-(43). Evaluating the order condition corresponding to tree 1 for this family leads to

3c22 − 7c2 + 4

3c2 − 2
= 2, (46)

which has only one valid solution, being c2 = 1

3
. The resulting Butcher tableau is

0 0
1

3

1

3

1 −1 2

0 3

4

1

4

(47)

which satisfies indeed trees 1 and 2. Evaluating equation (22) gives the second order accurate pressure

pn+1 = ψ̃3 = −
3

2
φ̃1 −

3

2
φ̃2 + 4φ̃3. (48)

10

The conditions corresponding to trees 3, 4 and 5 are not satisfied, so third order accuracy cannot be achieved.

4.1.3 Four-stage methods

For explicit four-stage, fourth-order methods the classical order conditions require c4 = 1 (see e.g. [16]),
so that tree 2 (and 6) are automatically satisfied. We found three methods that also satisfy the condition
corresponding to tree number 1; they read:

0 0
1 1
1

2

3

8

1

8

1 − 1

8
− 3

8

3

2

1

6
− 1

18

2

3

2

9

0 0
2

3

2

3

7

12

91

192

7

64

1 1

7
−2 20

7

5

28
− 3

4

48

35

1

5

0 0
3

4

3

4

5

9

100

243

35

243

1 4

75
− 19

21

324

175

8

45
− 16

63

243

280

5

24

(49)

For example, evaluating equation (22) for the left tableau gives

pn+1 = ψ̃4 =
1

2
φ̃1 − 2φ̃2 − 2φ̃3 +

9

2
φ̃4. (50)

As can be readily calculated, none of the above methods satisfies the conditions corresponding to trees 3, 4
and 5. Therefore, with a four-stage, fourth-order explicit method the pressure is, again, at best second-order
accurate.

4.2 Reconstructing instantaneous pressure values from time averages (Method
2)

We mentioned in section 2.2 that φ̃i defined by (21) is only first-order accurate in time but found that second
order accurate pressures ψ̃i are possible with the methods mentioned in section 4. In this section we propose
a different approach by reconstructing the point value pn+1 from the integral averages φ̃i. This approach can
be seen as a generalization of equation (18) by introducing a separate Butcher tableau Ãp for the pressure
term:

Ũi = un +∆t
i

∑

j=1

ãijF̃j−1 −∆t
i

∑

j=1

ãpijGψ̃j . (51)

Now the name of Method 1, which uses Ap = A, is clear: a single Butcher tableau for velocity and pressure.
In practice it is not necessary to derive Ap completely; we only need its last row. This will be detailed below.

First we consider the exact integration of equation (7) from tn to t̃i, which reads

L

∫ t̃i

tn

p(t)dt =M

∫ t̃i

tn

F (t)dt− (r1(t̃i)− r1(tn)), (52)

and we denote the exact average of p over this interval by φ(t̃i) (the exact counterpart of the approximation
φ̃i):

φ(t̃i) =
1

c̃i∆t

∫ t̃i

tn

p(t)dt. (53)

The challenge is to find a higher order accurate point value pn+1 from the time average values φ(t̃i). Such an
approximation of point values from integral averages is well-known in the field of Essentially Non-Oscillatory
(ENO) conservative finite difference schemes and is called reconstruction. We follow [20] to perform this
reconstruction, and refer to that work for more details. Denoting the primitive function of p(t) by P (t), we
can write

φ(t̃i) (c̃i∆t) =

∫ t̃i

tn

p(t)dt = P (t̃i)− P (tn), i = 1, 2, . . . s. (54)

We then construct an interpolation polynomial H(t) through the abscissa (c-values) of the Runge-Kutta

11

method. The derivative of H(t), h(t), is an approximation to p(t) (for details, see [12]):

h(t) =
∑

k∈K′

φ(t̃k) c̃k∆t ℓ
′
k(t), (55)

where ℓk are Lagrange polynomials,

ℓk(t) =
∏

j∈K,j 6=k

t− t̃j

t̃k − t̃j
, (56)

and K = {k1, . . . , km} is the set of points that will be used in the interpolation. Given the values φ(t̃k) and
the points t̃k, equation (55) can be evaluated at tn+1, which provides the approximation we are looking for:

pn+1 = h(tn+1). (57)

In practice we cannot use the exact average φ(t̃i) to find pn+1. φ(t̃i) is approximated by φ̃i, whose order
of accuracy depends on the stage order of the method. This stage order can be expressed by making use of
the so-called simplifying condition Ci(ξ) [21], which reads in terms of the shifted Butcher tableau:

C̃i(ξ) :

s
∑

j=1

ãijc
k−1
j =

1

k
c̃ki (1 ≤ k ≤ ξ). (58)

If C̃i(q) holds then polynomials of degree lower than q are exactly interpolated at stage i. With the notation
of the shifted tableau, C̃s(q) expresses the order of quadrature of the final step in the Runge-Kutta method,
so C̃s(s) trivially holds for an s-stage, s-th order method. Assuming that C̃i(q) holds, the equation for φ(t̃i)
can be written as

Lφ(t̃i) =
1

c̃i

i
∑

j=1

ãijMFj −
r1(t̃i)− r1(tn)

c̃i∆t
+O(∆tq), (59)

so that the difference between the exact integral and its numerical approximation is O(∆tq):

φ(t̃i) = φ̃i +O(∆tq). (60)

To summarize, it is possible to obtain a higher order accurate pressure at tn+1 by combining the average
values φ̃i from the different stages. To attain a certain order r requires at least r distinct stages (i.e. with
different ci), and each individual stage i should have stage order r, i.e., satisfy Ci(r). We will now check if
this is possible for methods with two, three and four stages.

4.2.1 Two-stage methods

For two-stage, second-order methods C̃2(2) is obviously satisfied, but C̃1(2) cannot be satisfied because the
equation for Ũ1 is simply a Forward Euler step, which is first-order accurate (this is always the case for
explicit methods).

4.2.2 Three-stage methods

Since C̃1(2) cannot be satisfied, we require C̃2(2) to be satisfied, i.e.,

a32c2 =
1

2
c23, (61)

together with the condition c3 6= 1 to have distinct c’s. Using the third-order conditions

b3a32c2 =
1

6
, b2c

2
2 + b3c

2
3 =

1

3
, (62)

12

this leads to b1 = 1

4
, b2 = 0, b3 = 3

4
and c3 = 2

3
. c2 can be chosen freely (6= 0), and then determines a31 and

a32. Wray’s popular third-order method [2] falls in this category, with c2 = 8

15
:

0 0
8

15

8

15

2

3

1

4

5

12

1

4
0 3

4

(63)

Another possibility is to take c2 = c3, which saves an evaluation of boundary conditions and forcing terms:

0 0
2

3

2

3

2

3

1

3

1

3

1

4
0 3

4

(64)

The interpolation polynomial h(t) from equation (55) is independent of c2 and given by:

h(t) = −

(

2 t−tn
∆t − 1

1− c3

)

φ̃2 +

(

2 t−tn
∆t − c3

1− c3

)

φ̃3, (65)

and pn+1 follows with c3 = 2

3
as

pn+1 = h(tn+1) = −3φ̃2 + 4φ̃3. (66)

This equation provides a new way to obtain a second-order accurate pressure by combining two first-order
accurate pressures of a three-stage method. It is also valid when Wray’s method is used only for the convective
terms and an appropriate implicit method for the diffusive terms, such as the method from [1].

If one wants to maximize stability instead of order of accuracy (second-order accuracy is sufficient in many
practical applications), one can use three-stage methods that are second order for the velocity. Combining
the condition for maximum stability along the imaginary axis (b3a32c2 = 1

4
) with condition (61) yields a

family of methods with c2 and c3 as free parameters. An example of a low-storage method satisfying these
conditions is presented in Perot and Nallapati [22], but it has c3 = 1 so a second-order accurate pressure
cannot be obtained. We propose the following alternative method

0 0
1

2

1

2

1

2

1

4

1

4

0 −1 2

(67)

which we obtained by requiring b1 = 0 and c2 = c3. The requirement b1 = 0 leads to the same storage
requirements as [22], and c2 = c3 has the advantage that only one intermediate boundary condition evaluation
is needed.

4.2.3 Four-stage methods

Four-stage, fourth-order methods have c4 = 1, so that even if C̃3(2) would hold, it cannot be used, because
the abscissa in the reconstruction should be distinct. We therefore look again for methods that satisfy C̃2(2).
Combining condition (61) with the fourth-order conditions leads to c3 = 1

2
and two families of solutions

13

result, corresponding to the ‘case II’ and ‘case IV’ solutions found by Kutta [16]:

0 0

c2 c2
1

2

1

2
− 1

8c2
1

8c2

1 1

2c2
− 1 − 1

2c2
2

1

6
0 2

3

1

6

c2 6= 0, (68)

0 0

1 1
1

2

3

8

1

8

1 1− 1

4b4
− 1

12b4
1

3b4

1

6

1

6
− b4

2

3
b4

b4 6= 0. (69)

The upper tableau with c2 = c3 = 1

2
is attractive because it requires only one intermediate evaluation of

boundary conditions and forcing terms. In a similar fashion as the three-stage method (equation (65) with
φ̃3 replaced by φ̃4), pn+1 follows as

pn+1 = −2φ̃2 + 3φ̃4. (70)

Again, this equation provides a new way to obtain a second-order accurate pressure by combining two first-
order accurate pressures of a four-stage method. The number of methods that are allowed by tableaux
(68)-(69) is much larger than with the tableaux from method 1 (see equation (49)).

4.3 Steady boundary conditions for the continuity equation (Method 3)

An important case for the incompressible Navier-Stokes equations is when the boundary conditions for the
continuity equation are steady, i.e., equation (3) can be written as

Mu = r1, (71)

where r1 is independent of t. Equation (5) then reads g(u) = 0, with g linear in u. This means that
gu = constant and all partial derivatives of gu (guu, gut, gtt, etc.) are zero. As before, all additional trees for
the u-component disappear, but most of the trees for the p-component (table 1) also vanish. Only trees 2, 5
and 6 remain, and it is possible to find higher order accurate methods for the pressure. For example, with
two stages a second-order accurate pressure is possible (c2 = 1), and with four stages a third-order accurate
pressure is possible. However, it is not necessary to consider such methods, because in the case gu = constant
the pressure can be computed to the same order of accuracy as the velocity, without additional cost. This
can be seen by comparing equation (21) for i = 1 with equation (44):

Lpn =MFn − ṙ1(tn), (72)

Lφ̃1 =
ã11
c̃1
MF1 −

r1(t̃1)− r1(tn)

c̃1∆t
. (73)

Considering that F1 is equal to Fn (determined at the end of the previous time step) and that ã11 = c̃1, these
expressions are equal if r1 is independent of time (or a linear function of t). This means that φ̃1 is actually
the r-th order accurate pressure at tn, and the additional Poisson solve associated with equation (44) can
be avoided. An existing implementation could remain unaltered; instead of taking φ̃s = φn+1, the pressure
that makes un+1 divergence free, one should take φ̃1 from the next time step to have a higher order accurate
pressure at the end of the current time step. We prefer to compute pn+1 and then skip the computation of
φ̃1 in the next time step. This works for any explicit Runge-Kutta method with at least two stages, thus
providing a simple way to improve the temporal accuracy of the pressure without increasing computational
cost.

14

4.4 Summary

We classify the methods analyzed so far as follows. The methods that were derived in section 4.1 will be
indicated by M1, the methods derived in section 4.2 are indicated by M2, and in case section 4.3 applies we
write M3. We then write MmSsRr to indicate that an s-stage explicit Runge-Kutta method of type m is
used with order s for the velocity and order r for the pressure. For example, there are three methods of type
M1S4R2 and they are given by the tableaux in (49). In case m = 3, we can always make r equal to s with
the approach of section 4.2, and any existing s-stage, s-th order method can be used. In case r = 1 we have
the standard approach with pn+1 = φ̃s, which can be used with any method.

5 Results

5.1 Taylor vortex

The Taylor-Green vortex in two dimensions is an exact solution to the Navier-Stokes equations:

u(x, y, t) = − sin(πx) cos(πy) e−2π2t/Re, (74)

v(x, y, t) = cos(πx) sin(πy) e−2π2t/Re, (75)

p(x, y, t) =
1

4
(cos(2πx) + cos(2πy))e−4π2t/Re. (76)

The domain on which we define the solution is the square [1
4
, 2 1

4
]×[1

4
, 2 1

4
] with either time-dependent Dirichlet

or periodic boundary conditions. Prescribing both inflow and outflow with Dirichlet conditions is normally
not a good idea, see e.g. [23], but we did not find any negative effects in this test case. We deliberately do
not take the square [0, 2]× [0, 2] (or [−1, 1]× [−1, 1]) as domain, because it leads to u · n = 0 on the entire
boundary, meaning that r1(t) = 0. In all simulations we use Re = 100 and we integrate from t = 0 to t = 1.
The Poisson equation is solved by LU-decomposition of L, which is the most efficient way for this relatively
small problem.

We take a coarse mesh with 20×20 volumes and vary the time step to investigate the temporal accuracy.
The spatial error clearly overwhelms the temporal error and in order to compute the latter, we subtract
the solution from a simulation with a small time step (∆t = 10−3), so that the spatial error is effectively
eliminated.

The first test concerns periodic boundary conditions, such that the observations from section 4.3 apply
and the methods are characterized as M3. Four s-stage, sth-order Runge-Kutta methods are tested, with
s = 1, 2, 3, 4. For s = 1 we take Forward Euler, for s = 2 modified Euler (explicit trapezoidal, Heun’s
method), for s = 3 Wray’s method, and for s = 4 the classical fourth-order method. In all cases the number
of Poisson solves is the same as the number of stages. Figure 1a shows that with our current approach both
pressure and velocity attain the classical order of convergence, whereas the standard method (pn+1 = φ̃s)
leads to only first order convergence of the pressure, see figure 1b. The velocity error is unaffected by the
accuracy of the pressure. For this very smooth test case the error of higher order methods does not only
converge faster upon time step refinement (as predicted by theory), but the magnitude of the error for the
largest time step is also much smaller. We only show here the L∞-norm because the L2-norm shows exactly
the same behavior.

The second test concerns unsteady Dirichlet conditions with methods of type M1. For s = 1 and s = 2
only r = 1 is possible, so we focus on s = 3 and s = 4 with r = 2. For M1S3R2 the only solution is (47) with
(48) for the pressure, for M1S4R2 we take the first tableau in (49) (because it has the simplest coefficients)
and (50) for the pressure.

The third test concerns unsteady Dirichlet conditions with methods of type M2. As for methods of type
M1, we focus on s = 3 and s = 4. For M2S3R2 we take Wray’s method with (66) for the pressure and for
M2S4R2 we take (68) with c2 = 1

4
and (70) for the pressure.

Figures 2a and 2b then show the order of accuracy of the velocity and pressure for these two methods, in
case of the ‘standard’ approach (R1), our approach (R2) and in case of an additional Poisson solve (R3 or
R4). The additional Poisson solve can be performed because the explicit dependence of r1 on t is known so
that ṙ1(t) can be calculated. The velocity error is in all cases again independent of the particular approach

15

10
−2

10
−1

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

∆t

e

‖eu‖∞ M3S1R1

‖eu‖∞ M3S2R1

‖eu‖∞ M3S3R1

‖eu‖∞ M3S4R1

‖ep‖∞ M3S1R1

‖ep‖∞ M3S2R1

‖ep‖∞ M3S3R1

‖ep‖∞ M3S4R1

(a) Standard method

10
−3

10
−2

10
−1

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

∆t

e

‖eu‖∞ M3S1R1

‖eu‖∞ M3S2R2

‖eu‖∞ M3S3R3

‖eu‖∞ M3S4R4

‖ep‖∞ M3S1R1

‖ep‖∞ M3S2R2

‖ep‖∞ M3S3R3

‖ep‖∞ M3S4R4

(b) New method for steady boundary conditions

Figure 1: Convergence of temporal error for Taylor-Green problem with steady boundary conditions.

16

for the pressure. It is confirmed that both methods M1 and M2 indeed lead to a second-order accurate
pressure when the proper Butcher tableaux are chosen. The difference in accuracy between the results of
M1 and M2 is small, but this depends on the test case under consideration. The computational effort is for
both very similar. These second-order schemes greatly improve the accuracy with respect to the standard
first-order approach without additional cost. The effort of an additional Poisson solve can only be justified
in case higher-order accurate (third or fourth order) pressure solutions are required.

10
−3

10
−2

10
−1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

∆t

e

‖eu‖∞ M1S3

‖eu‖∞ M1S4

‖ep‖∞ M1S3R1

‖ep‖∞ M1S3R2

‖ep‖∞ M1S3R3

‖ep‖∞ M1S4R1

‖ep‖∞ M1S4R2

‖ep‖∞ M1S4R4

(a) New method, with single Butcher array for velocity and pressure (M1)

10
−3

10
−2

10
−1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

∆t

e

‖eu‖∞ M2S3

‖eu‖∞ M2S4

‖ep‖∞ M2S3R1

‖ep‖∞ M2S3R2

‖ep‖∞ M2S3R3

‖ep‖∞ M2S4R1

‖ep‖∞ M2S4R2

‖ep‖∞ M2S4R4

(b) New method, with reconstruction of instantaneous pressure values from
time averages (M2)

Figure 2: Convergence of temporal error for Taylor-Green problem with unsteady Dirichlet boundary con-
ditions.

17

5.2 An actuator disk in an unsteady inflow field

A practically relevant situation with a temporally varying inflow appears when simulating the flow of air
through wind turbines operating in a turbulent atmospheric wind field. Such simulations of wind-turbine
wakes can contribute to the understanding of the effect of wakes on power production and blade loading.
Different methods exist for modeling the effect of the wind turbines on the flow, such as actuator methods
and direct methods [24]. In the former, the action of the turbine is modeled with a body force, such as an
actuator surface, and in the latter the action of the turbine is modeled by computing the actual flow around
it, for example by applying a body fitted grid around the turbine blades. In both cases accurate knowledge
of the pressure field is necessary to calculate the forces that act on the blade, such as lift and drag.

Here we study a simplified case of an actuator disk in a laminar flow. The domain is [0, 10]× [−2, 2], the
Reynolds number is 100 and the thrust coefficient of the turbine is CT = 1

2
. The actuator disk is located at

x = 2 and has unit length, see figure 3. On all boundaries, except the inflow boundary at x = 0, we prescribe
the following outflow conditions (see e.g. [23]):

y = −2, 2 :
∂u

∂y
= 0 p−

1

Re

∂v

∂y
= p∞ (77)

x = 10 : p−
1

Re

∂u

∂x
= p∞

∂v

∂x
= 0. (78)

For a verification study of the actuator disk in a laminar flow with steady inflow and these boundary
conditions we refer to [25]. In the current test, the inflow conditions are given by:

x = 0 : ub(t) = cosα(t), vb(t) = sinα(t), (79)

where α(t) = π
6
sin(t/2). This describes a time-varying inflow with constant magnitude but changing direc-

tion, see figure 4a.
First we perform a simulation from t = 0 to t = 4π, with a uniform mesh having 200 × 80 volumes

(∆x = ∆y = 1/20) and 10, 000 time steps (∆t = 4π/10000), using the M2S4R4 method of equation (68),
again with c2 = 1

4
. We focus on methods of type M2, because they still allow for some freedom in the choice

of the coefficients of the Butcher tableau, in contrast to methods of type M1. In figure 4b the normalized
kinetic energy of the flow (integrated over the entire domain) is shown, from which it can be concluded that
the flow becomes periodic with period 2π after approximately t = 4π. The velocity and pressure field at
this time instant are shown in figures 5 and 6. The wake has been deflected downwards due to the inflow
with negative vb that was present from t = 2π to 4π. The presence of the actuator disk is clearly seen in the
pressure contours; they are discontinuous across the disk.

Due to the very small time step, these velocity and pressure fields have a negligible temporal error
compared to the spatial error, and are therefore used to compute the temporal error in the velocity and
pressure field for larger time steps. The resulting convergence of the velocity and pressure error is shown in
figure 7, for methods (63) and (68). As before, we see that the velocity attains its classical order of accuracy,
i.e., third order for the three-stage method, and fourth order for the four-stage method. The pressure can be
computed to the same order as the velocity, but this requires an additional Poisson solve and an expression
for ṙ1(t). Since ṙ1(t) contains only the normal velocity component on the boundary, it is sufficient to derive
the expression for u̇b(t):

u̇b(t) = −
π

12
sin (α(t)) cos(t/2). (80)

On the other hand, the standard approach is only first order and starts with a large error at large time steps.
Our proposed approach, corresponding to the lines M2S3R2 and M2S4R2, does not require any significant
additional computational effort (no additional Poisson solve, no evaluation of ṙ1(t)), it clearly shows second-
order accuracy and starts with a small error already at the largest time step considered. This time step,
∆t = 4π/200, is the largest step for which stable solutions could be obtained. It is determined by the
convective terms, showing the benefit of explicit Runge-Kutta methods for this test case.

18

ub(t)

vb(t)

α(t)

F

actuator disk

wake

Figure 3: Actuator disk in an unsteady inflow field.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

t
4π

u
b
,
v

b

u b

vb

(a) Velocity components

0 0.5 1 1.5 2 2.5 3 3.5 4
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

t
4π

k
/
k
(0

)

(b) Total kinetic energy

Figure 4: Time evolution of inflow and total kinetic energy.

19

X

Y

0 2 4 6 8 10
-2

0

2

4

U: 0.68 0.74 0.8 0.86 0.92 0.98

Figure 5: Streamlines and u-contour lines at t = 4π.

X

Y

0 2 4 6 8 10
-2

0

2

4

P: -0.1 -0.04 0.02 0.08 0.14

Figure 6: Streamlines and p-contour lines at t = 4π.

20

10
−3

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

∆t

e

‖eu‖∞ M2S3

‖eu‖∞ M2S4

‖ep‖∞ M2S3R1

‖ep‖∞ M2S3R2

‖ep‖∞ M2S3R3

‖ep‖∞ M2S4R1

‖ep‖∞ M2S4R2

‖ep‖∞ M2S4R4

Figure 7: Velocity and pressure error at t = 4π for a selection of methods.

6 Conclusions

In this paper we have analyzed the temporal order of accuracy of the velocity and pressure when explicit
Runge-Kutta methods are applied to the incompressible Navier-Stokes equations. It is shown that the order
of accuracy of the velocity is not affected by the differential-algebraic nature of the incompressible Navier-
Stokes equations and is therefore the same as for non-stiff ordinary differential equations. However, if the
semi-discrete equations involve time-dependent operators, then additional order conditions appear for orders
higher than two. These conditions restrict three-stage, third-order methods to a one-parameter family of
methods, to which the popular method of Wray does not belong. Four-stage, fourth-order methods for
time-varying operators do not exist, and one has to resort to five stages to achieve fourth order.

The pressure always suffers from the problem that upon time-stepping a time-average pressure is com-
puted, instead of a point value. Therefore, achieving higher than first order accuracy for the pressure imposes
additional conditions on the coefficients of the Runge-Kutta method compared to the classical order condi-
tions. Fortunately, if the boundary conditions for the continuity equation are independent of time, then the
pressure can be determined to the same order of accuracy as the velocity, without requiring an additional
solution of a Poisson problem. However, if the boundary conditions for the continuity equation depend on
time, then additional order conditions for the pressure appear. These are not satisfied by most existing ex-
plicit Runge-Kutta methods, so that the pressure is typically only first-order accurate in time. Second-order
accuracy can be achieved by only one three-stage, and only three four-stage methods.

A new approach is to reconstruct instantaneous pressure values from time-average values. We showed
that this reconstruction, based on Lagrange polynomials, can be of the same order as the number of stages,
but that the stage order of the method limits the accuracy of the pressure. These methods can be interpreted
as having a different Butcher tableau for velocity and pressure, in contrast to the foregoing single-Butcher
array approach. Three- and four-stage methods with second-order stage order were derived, leading to a
much larger class of methods that have second-order accuracy for the pressure. Furthermore, a distinct
advantage of this new class of methods is that they can be directly applied to implicit and implicit-explicit
(IMEX) Runge-Kutta methods as well.

In all cases considered here third- or fourth-order accuracy could not be obtained with a three- or four-
stage method without resorting to an additional Poisson solve. Such an additional solve is not always
straightforward in practical computations, because it requires the derivative of the boundary conditions for
the continuity equation with respect to time.

To conclude, we think that the ‘best’ explicit Runge-Kutta method for many incompressible Navier-Stokes
problems is a three-stage method of type M2, that is third order for the velocity and second order for the

21

pressure. It combines stability (includes the imaginary axis), accuracy and flexibility (c2 can still be chosen, in
contrast to the three-stage method of type M1). A fourth-order method might lead to unnecessarily accurate
solutions for the velocity without improving the order of accuracy of the pressure. For time-dependent
operators, the three-stage method derived in section 4.1.2 is to be preferred: it maintains third-order accuracy
on time-varying meshes, and is second-order accurate for the pressure. Of course, the coefficients of a Runge-
Kutta method can be chosen on other grounds than accuracy only, for example low storage, low dispersion
or built-in error estimation with adaptive step-size control. Such arguments have not been considered in this
work.

References

[1] P.R. Spalart, R.D. Moser, and M.M. Rogers. Spectral methods for the Navier-Stokes equations with
one infinite and two periodic directions. J. Comput. Phys., 96(2):297–324, 1991.

[2] H. Le and P. Moin. An improvement of fractional step methods for the incompressible Navier-Stokes
equations. J. Comput. Phys., 92(2):369–379, 1991.

[3] Y. Morinishi, T.S. Lund, O.V. Vasilyev, and P. Moin. Fully conservative higher order finite difference
schemes for incompressible flows. J. Comput. Phys., 143:90–124, 1998.

[4] R. Knikker. Study of a staggered fourth-order compact scheme for unsteady incompressible viscous
flow. Int. J. Numer. Meth. Fluids, 59:1063–1092, 2009.

[5] N. Nikitin. Third-order-accurate semi-implicit Runge-Kutta scheme for incompressible Navier-Stokes
equations. Int. J. Numer. Meth. Fluids, 51:221–233, 2006.

[6] J.M.C. Pereira, M.H. Kobayashi, and J.C.F. Pereira. A fourth-order-accurate finite volume compact
method for the incompressible Navier-Stokes equations. J. Comput. Phys., 167:217–243, 2001.

[7] N.A. Kampanis and J.A. Ekaterinaris. A staggered, high-order accurate method for the incompressible
Navier-Stokes equations. J. Comput. Phys., 215:589–613, 2006.

[8] E. Hairer, C. Lubich, and M. Roche. The Numerical Solution of Differential-Algebraic Systems by

Runge-Kutta Methods. Springer, 1989.
[9] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic

Problems. Springer, 1996.
[10] F.H. Harlow and J.E. Welch. Numerical calculation of time-dependent viscous incompressible flow of

fluid with free surface. Phys. Fluids, 8:2182–2189, 1965.
[11] U.M. Ascher and L.R. Petzold. Computer Methods for Ordinary Differential Equations and Differential-

Algebraic Equations. SIAM, 1998.
[12] B. Sanderse and B. Koren. Accuracy analysis of explicit Runge-Kutta methods applied to the incom-

pressible Navier-Stokes equations. J. Comput. Phys., 231:3041–3063, 2012.
[13] P.M. Gresho and R.L. Sani. Incompressible Flow and the Finite Element Method. Volume 2: Isothermal

Laminar Flow. Wiley, 2000.
[14] J.B. Perot. An analysis of the fractional step method. J. Comput. Phys., 180:51–58, 1993.
[15] J.B. Perot. Comments on the fractional step method. J. Comput. Phys., 121:190–191, 1995.
[16] J.C. Butcher. Numerical Methods for Ordinary Differential Equations. Wiley, 2003.
[17] V. Brasey and E. Hairer. Half-explicit Runge-Kutta methods for differential-algebraic systems of index

2. SIAM J. Numer. Anal., 30(2):538–552, 1993.
[18] J.C. Butcher. Coefficients for the study of Runge-Kutta integration processes. J. Australian Math. Soc.,

3:185–201, 1963.
[19] F. Cameron. A Matlab package for automatically generating Runge-Kutta trees, order conditions, and

truncation error coefficients. ACM Trans. Math. Software, 32(2):274–298, 2006.
[20] C.-W. Shu. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory schemes for hyperbolic

conservation laws. Technical Report NASA/CR-97-206253, ICASE Report no. 97-65, NASA Langley
Research Center, 1997.

[21] J.C. Butcher. Implicit Runge-Kutta processes. Math. Comput., 18:50–64, 1964.
[22] B. Perot and R. Nallapati. A moving unstructured staggered mesh method for the simulation of incom-

pressible free-surface flows. J. Comput. Phys., 184:192–214, 2003.
[23] P. Wesseling. Principles of Computational Fluid Dynamics. Springer, 2001.

22

[24] B. Sanderse, S.P. van der Pijl, and B. Koren. Review of computational fluid dynamics for wind turbine
wake aerodynamics. Wind Energ., 14:799–819, 2011.

[25] B. Sanderse. ECNS: Energy-Conserving Navier-Stokes Solver. Verification of steady laminar flows.
Technical Report ECN-E–11-042, Energy research Centre of the Netherlands, 2011.

23

