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Abstract: In fusion plasmas there is extreme anisotropy due to the high temperature and large
magnetic field strength. This causes diffusive processes, heat diffusion and energy/momentum loss
due to viscous friction, to effectively be aligned with the magnetic field lines. This alignment
leads to different values for the respective diffusive coefficients in the magnetic field direction and
in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 102
times larger in the parallel direction than in the perpendicular direction. This anisotropy puts
stringent requirements on the numerical methods used to approximate the MHD-equations since
any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical
error in approximating the parallel diffusion. Currently the common approach is to apply magnetic
field aligned grids, an approach that automatically takes care of the directionality of the diffusive
coefficients. This approach runs into problems in the case of crossing field lines, e.g., x-points
and points where there is magnetic reconnection. This makes local non-alignment unavoidable.
It is therefore useful to consider numerical schemes that are more tolerant to the misalignment
of the grid with the magnetic field lines, both to improve existing methods and to help open the
possibility of applying regular non-aligned grids. To investigate this several discretization schemes
are applied to the anisotropic heat diffusion equation on a cartesian grid.
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1 Introduction

Anisotropic diffusion is a common physical phenomenon and describes processes where the diffusion of some
scalar quantity is directionally dependent. Anisotropic diffusive processes are for instance Darcy’s flow for
porous media, large scale turbulence where turbulence scales are anisotropic in size, and heat conduction
and momentum dissipation in fusion plasmas.

In tokamak fusion plasmas the viscosity and heat conduction coefficients, parallel to the magnetic field, may
be in the order of 10° and 102 times larger than the corresponding perpendicular conduction coefficients.
This is caused by the fact that the heat conductivity parallel and perpendicular to the magnetic field lines is
determined by different physical processes; along the field lines particles can travel large distances without
collision whilst perpendicular to the field line the mean free path is in the order of the gyroradius, see e.g.
Holzl [1].

Numerically, high anisotropy may lead to the situation where errors in the direction in which the coefficient
value is largest may significantly influence the diffusion in the perpendicular direction. This may necessitate
either a high-order approximation in the direction of the largest coefficient value and/or a limitation on the



degree of anisotropy (see e.g. Sovinec et al [2], Meier et al [3]). Given the high level of anisotropy in tokamak
plasmas, a numerical approximation may introduce large perpendicular errors if the magnetic field direction
is strongly misaligned with the grid. Here, misaligned means that the directions of diffusion are not aligned
with the grid points. Difficulties that may arise with highly anisotropic diffusion problems on non-aligned
meshes are:

e significant numerical diffusion perpendicular to the magnetic field lines due to grid misalignment,
Umansky et al [4],

e non-positivity near high gradients, see e.g. Sharma et al [5],
e mesh locking, stagnation of convergence-dependent on anisotropy, see e.g. Babuska and Suri [6],
e convergence loss in case of variable diffusion tensor, see e.g. Giinter et al [7].

It is possible to use a field aligned coordinate system. However, this cannot be maintained throughout the
plasma; problems arise at x-points and in regions of highly fluctuating magnetic field directions (for instance
in case of edge turbulence). To confidently perform simulations of phenomena that rely heavily on the reso-
lution of the perpendicular temperature gradient we must apply a scheme that is robust in terms of accuracy
in case of varying anisotropy and misalignment.

In literature the associated problems are discussed individually. Giinter et al [7], apply a mimetic finite
difference method that maintains the order of accuracy for non-aligned (regular, rectangular) meshes. How-
ever, the scheme is not monotonous. Giinter et al later apply the support-operator approach from Hyman
et al [8] to a finite element method [9]. Sharma et al [5] apply a flux-limiter to enforce the monotonicity,
but this is limited to relatively small levels of anisotropy not relevant for fusion plasma and it increases the
perpendicular numerical diffusion. Other monotonicity preserving methods that maintain the accuracy were
devised for mimetic finite difference schemes. These methods put restraints on the diffusion tensor and often
require a non-linear approach, see e.g. Lipnikov et al [10]. Most of the techniques to handle diffusion in
anisotropic media are based on finite volume or finite element methods and revolve around handling the in-
terpolation of the flux over the cell-faces, e.g. Aavatsmarket et al [11], [12], [13], Lipnikov et al [10], [14], [15],
Potier [16], and Pasdunkorale and Turner [17]. In the present work the focus is on applying a discretization
in the direction of the strongest diffusion by means of interpolation. This can be applied to the flux operator
only or to the entire operator.

Hyman et al [8], [18] and Brezzi et al [19], [20] apply mimetic finite difference (MFD) methods, where
the latter also discuss monotonous MFD schemes. The MFD methods are mimetic to the extent that they
preserve the self-adjointness of the divergence and the flux operator, i.e., the self-adjointness is between the
discrete operators DZV and K GRAD. Manzini [21] considered a special treatment of tangential fluxes to
avoid mesh-locking for relatively small levels of anisotropy.

The focus of this paper is on the order of convergence and the perpendicular numerical diffusion for ex-
tremely high levels of anisotropy. We apply the asymmetric and symmetric finite difference schemes given
in Giinter et al on co-located and (semi)-staggered grids and we give a novel interpolation-based scheme on
a co-located grid. Whenever we speak of field lines we refer to a general directional field.

2 Problem Description

Anisotropic thermal diffusion is described by the following model

oT

q=-D-VT. &



where T represents the temperature, b the unit direction vector of the field line, f some source term and D
the diffusion tensor. For a two-dimensional problem the diffusion tensor is given by

unit direction vector: b = [cosa, sina]T,
D= D”bb + D, (Z — bb),

D — ( DHb%—I—Dng (DH —DL)ble >
(DH — DJ_)blbg Dj_b% + DHb% ’

where D) and D represent the parallel and the perpendicular diffusion coefficient respectively. We define x,y
as the non-aligned coordinate system and s,n as the aligned coordinate system, see figure 1. The boundary
conditions are discussed per test case. The diffusion equation is approximated on a uniform cartesian grid,
with Ax = Ay = h.

In tokamak fusion plasma simulations the diffusion coefficients are often taken as temperature-dependent.
In general the parallel and perpendicular diffusion coefficients are assumed to be proportional to 7°/2 and
T—1/2 respectively, i.e., the anisotropy varies strongly with temperature.
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Figure 1: Explanation of symbols

3 Finite Difference Schemes

We limit the discussion to finite difference schemes. Given a uniform grid this can be directly translated
to a finite volume approach. We consider several second-order accurate finite difference schemes for the
approximation of model equation (1). The first two schemes are described in Giinter et al [7]. The difference
between these schemes lies in the treatment of the flux, particularly the location of the flux. The new
schemes, to be presented here, aim to improve the accuracy of co-located schemes by applying a stencil that
lies on an approximation of the field line. We use sub-indices x, y, s, n to denote the respective derivatives.

3.1 Asymmetric Finite Differences

The first finite difference scheme for heat diffusion we discuss is depicted in figure 2. For a spatially constant
diffusion tensor this scheme reduces to the standard second-order scheme for diffusion. The label asymmetry
is coined because of the different treatment of the x- versus y-differential in each point. The different
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Figure 2: Semi-staggered grid, asymmetric scheme, temperature 7" is defined on the full indices and the
diffusion tensor D on the half-indices

treatment is a direct result of taking the flux values in i & 3, j and 7,5 + 1,
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. For the heat conduction term we have

ij—3%
T
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In case of a co-located grid we use arithmetic averaging for the diffusion tensor, so:

and similar formulas for g—T ’ N
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Finally, the diffusion follows from

(Q1)i+%,j - (%)F%,j n (QQ)i,j+% - (qQ)i,jfl

Voa= Az Ay

Besides this semi-staggered grid approach where q and D are defined on the half-indices i + %, jand i, j+ %,

we also implement the scheme on a co-located grid where D is defined at the same points as the temperature.



3.2 Symmetric Finite Differences

Another approach is taken by Giinter et al [7], they use a symmetric scheme (with a symmetric linear
operator) that is mimetic by maintaining the self-adjointness of the differential operator. By maintaining
the self-adjointness numerically the following integral identity still holds at the discrete level:

/¢V-qu+/q-V¢dV= é(q - n)dS,
|4 1% o)

where ¢ is an arbitrary real-valued function in z,y. The total energy of a system described by the diffusion
equation is given by E = fv TdV. In absence of any surface and source terms this should be constant. This

means that 22 = 0 or Jy V- (D-VT)dV = 0. If we take a constant value for ¢ we find that

oF
qdV = =—= =0
ARSI

and so energy is preserved exactly.
The approach goes as follows. First, the divergence terms are determined at the center points (see figure 3):
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Figure 3: Staggered grid, symmetric scheme, temperature 7" is defined on the full indices and the diffusion
tensor D on the half-indices

Next, the diffusion tensor is applied to obtain the heat flux

ar
578?]

T
)
i+3.0+3

aT
4=-D-VI, Qg1 ="Diryis- <a_:c _



where the diffusion tensor is taken as the arithmetic mean of the four surrounding points, so

~ Dit141+Dip1;+ D1+ D

Dty 1

Finally, the divergence is taken over the heat flux

(Q1)i+§,j+% + (‘J1)z‘+§,j—% - (ql)i—%,j-i-% - (ql)i—%,j—%
2Ax

+(‘12)i+%,j+% (22)i-g 541 —(@2)imy -1 — (@)ip 151

2Ay '

V.q=

Two cases are considered, a fully staggered grid where q and D are defined on the half-indices ¢ + %, V== %
and a co-located grid where D is defined at the same points as the temperature.

3.3 Aligned Finite Differences

The idea is that differencing along the field line yields an approximation less prone to large false perpendicular
diffusion. To do this we have to use interpolation to find the values of 7" and D on the field line. The field
line itself is approximated, by tracing. In the current implementation, the interpolation of 7T, b and D is
done on a co-located grid. In the following section we will consider x, y as local coordinates where the origin
is located in the stencil point ¢, 7. By applying the product rule and some vector identities we can write the
diffusion equation in parts:

V- (D-VT)=A; + Ay + A3 + Ay, (2)

where the parts are given by

field line curvature: Ay = — (D —D1)V-by (b -VT),
field strength variation: Ay = (Dy—DL)V-b(b-VT),
temperature diffusion: A3z = Dybb:VVT + D, ;b b, : VVT,
diffusion variation: A4 = (b-VT)(b-VD))+ (b -VT)(by-VD,).

Rewriting this in s,n coordinates yields

Ay =~ (D = D1)NT,,
Az =(Dy — D1)STs,
As =D||Tss + D Ty,
Ay =D Ts+ D1, Ty,
where
S = —baby, +b1ba,, N = —b1ba, + bab1,.
So we can write
V'(D'VT)ZV- (D”(b-VT)b) +V'(DJ_(bJ_'VT)bJ_),
V- (Dy(b-VT)b) = Dy (—=NT, + ST, + Tss) + Dy Ts,
V(D (b, -VT)by)=D, (NT, — ST, + Tpy) + D1 Tp.
Note that S = a,, and N = —a.

When applying the equations of magnetohydrodynamics to nuclear fusion plasmas, an assumption to be
made is that the temperature is diffused instantaneously along the field line. This means that the variation



of the temperature in the direction of the field line is zero, i.e., b- VT =0, Ts = 0. So in that case our set
of equations can be reduced to

Ay =D, NT,,
As =0,

Az =D Thp,
Ay =D, T,.

Here, we stick to the more general form with the parts given by (3). We continue by applying an aligned
stencil to approximate equation (2) in s, n-coordinates. The stencil points r, 1, u, d, ¢ are given in figure 4.
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Figure 4: Locally transformed grid, 5-point stencil

The values at the locations 7,1, u, d are determined by bi-quadratic interpolation:
v(x,y) = crz’y? + cax®y + c3y’r + cux? + sy + coxy + crx + cgy +co,  x,y € [—h, b, (4)

where v can represent 7', b1, b2, D) or D . For convenience we assume that we have a uniform Cartesian grid
with Az = Ay = h. Then, for T, the coefficients ci, ... cy follow from!

cy h* h3 —h3 h%? h? —h? —h h 1 Tio1,j+1
co h* h3 h® h% h? h? h h 1 Tit1,5+1
cs3 ht —h* —h® h? h? h? —h —h 1 Tio1,j-1
Cy4 h* —h3 h® h? h? —h? h —h 1 Tit1,j-1
s |=vI!T, v=[ 0o 0 0 R 0 0 -h 01 [, T=]| Ti_, :
Cg 0 0 0 h2 0 0 h 0 1 Ti+1,j
Cr 0 0 0 0 h2 0 0 h 1 Ti,j-‘,—l
Cg 0 0 0 0 h2 0 0 —h 1 Ti,j—l
Cy 0 0 0 0 0 0 0 0 1 T;
The matrix V contains the polynomial terms for each node, see figure 4. The coefficients ¢q, - - - , cg are now

1similarly for b17 bg, D”7 DJ_



given by

1 T; i Ti1; Tiv1; Ti Ti1.— Tiv1i- Tiv1. Ti 1.
\74 7,7—1 1—1,7 141,79 7,7+1 1—1,7—1 1+1,9—1 i+1,74+1 1—1,7+1
—— (7, - = = = :
Clh4<”2222+4+4+4+4>
1
cy = e (2T -1 — 2T j1 + Tic1js1 + Tiprj+1 — Ticrj—1 — Tig1,j-1) »
1
c5 = g3 (Tio1y = 205 + Toprjor + T iin = Tiongor = Tt i)
1 1
of = 5553 (Tim1; = 2T + Tivag) s 5 = 555 (Tigo1 =205+ Tijia),
1
cg = 12 Limrg—1 + Tivrgn = Tivngo1 = Tica i)
v _ Tiv1;—Ti1; v _ Tij+1—Tij—
= oh 0 8T oh
CS‘)/ = Ti,j7
where the superscript V' denotes Vandermonde. Note that the coefficients cq, ... cg are all approximations

of differential terms in point 7, j,

€1 = %Tzzyy +O0(h?), 2= %Tzzy +0(h?), 3= %Tyyz +O(h?),
e = 5T+ O(h?), o5 = 35Ty +O(h?), c6=Toy +O(h?),
cr =T, + O(h?), cs = Ty + O(h?).

For comparison purposes we change the coefficients that represent 77, Ty, T, and T}, to involve more nodes
to approximate the respective differentials,

1
i = gpz Limtg1 + Timajm1 = 2T0 -1 + 2Ticay — AT5 + 2T — 20511 + Tinjn + Tign )

1
5 = gz Limtg1 + Ticajm1 = 2Tim1 + 2Ti i1 — 4T3 + 2Ti 1 = 2T + Tinjn + Tign )

1
;= g (Tirrg + Tivrgn + Tovrg-1 = 2Tim15 = Ticagnn = Timrg-1)

1
g = A (2T j41 + Ticvjrr + Tivr g1 — 2T -1 — Tic1im1 — Tigrj-1) -

This is equivalent to

cf = c}f + CY%h2, 055 = cg + CY%}LQ, c? = cy + c}{%hz, cg = cg + c;/%hz,

where the superscript S denotes symmetric. The reasoning is that the Vandermonde coefficients represent the
asymmetric scheme for spatially constant diffusion tensor and likewise the symmetric coefficients represent the
mimetic (or symmetric) scheme for a spatially constant diffusion tensor. These are consistent approximations
of the differential terms. However, when using these coefficients in the bi-quadratic interpolation they do
not exactly yield all nodal values for the given locations.

The locations of 7,1, u, d are based on the field line, a first estimate is to apply a single step in the direction
of the field line. With s the coordinate in field line direction, n the coordinate normal to it and with As and
An the steps in both directions, the locations then become

(T, yr) = (b1,b2)As,  (x1,y1) = (=b1, —b2)As,  (Tu,yu) = (=b2,b1)An, (x4,yq) = (b2, —b1)An. (5)

Now we apply these coordinates (5) to construct discrete schemes in s, n-coordinates for the individual parts



.Al ,AQ,Ag and .A4.

3.3.1 Cousistency Analysis

The following analysis holds for both the symmetric and the Vandermonde coefficients, the superscripts of the
coefficients will denote the variable to which they apply. We remark that although the accuracy requirement
holds for the sum A; + Az + As + A4, we choose to impose it on A;,4s,43 and A4 individually.

For the approximation of A4 we have the following expression:

Dy, =Dy, T, =T, LD =D1,Tu =T

As = 2As 2As 2An 2An (6)

To verify that this scheme approximates part Ay second-order accurately we substitute the interpolation
functions in equation (6) and we collect the coefficients:

1 D D
eorders- s (e (o = w0) + ¢ (g = )} (eF (o = @) + e (e =)

1
1A (e = wa) + e (= v) ) (F (o = ) + e (9 — )

s D D
1%t-order: 4A 3 (C ! (xr — 1) + Cg ! (yr — yl)) C4T (Ig - le) + Cg (y? - yl2) =+ CGT (zry, — xlyl)) )

1
s (P G — ) D = a)) (5 (2~ a3) + F (02— 02) +F Gragta — ran)

where the superscripts of the interpolation coefficients represent the variable to which the interpolation
applies. Now the 0*-order expression must be equal to A4 and the 1%*-order expression must be zero. The
requirements that can be distilled from this are

(2, — )% = 4b3AS2,  (yr —y1)? = 4b3As2, (w0 — 21)(yr — Y1) = 4b1baAs?,
(14 — 2q)? = 4b3AN2,  (yu —ya)? = 403AN%, (14 — 24)(Yu — Ya) = —4b1baAn?,

2 2 2 2 _ _
xr,u - ‘,El,d =0 yr,u - yl,d - 07 TruYru — T1,dYl,d = 0.

This holds for the locations given by equation (5). It appears that the first-order term A4 can be approxi-
mated with second-order accuracy.
For the second-order terms in 43 we apply the following finite difference formula

T, —2T.+ 1T, T, —2T.+1Ty

A3 = DH AS2 + DJ_ An2 . (7)

Substituting the interpolation values in equation (7) and collecting terms by order in h gives

D
—15t-order: s ”2 (cF (2 +m1) + ek (yr +w1)) + An? (cF(zu + a) + ct (Yu +d))

D
Tz (@2 +0)) + 02+ 97) + f ey + wun)

Dy
RN (ci (= +y3) + c5 (yn + y3) + ¢ (Tuu + Taya))

0th-order:

t_order: A—l ( (22yr + ziy) + o8 (yPa, + yfxl))
_|_

D
A (2 (@hyu + 2a) + e (Yamu + yiza))



where the —1%%- and 1%*-order term should be zero, and the 0*-order terms should be equal to A3. This
gives the following requirements

Ly + Tl,d = 07 Yrou + Yi,d = 07 x%uyr,u + x%)dyl,d = 07 xr,uy%u + xl,dyl%d = 07
Tryr + Ty = 2b1baAS?, y? + yl2 = 2b§A52, x% + xl2 = 2b%A52,
TyYu + Taya = —2b1baAn?, Y2 +y2 = 2b3An?, 22 + 27 = 203An?.

These requirements are fulfilled by the location set described by (5).
We also apply centered differencing for the first-order terms in As:

b2u—b2d) T -1

by, — b1,
2An 2As (8)

b
2An th

Az = (D) — Dy) (-bz

Substituting the interpolation values in equation (8) and collecting terms by order in h gives

Dy -D,
0"-order: e | (<ot + bact)(u — 2a) + (=back’ + back) oy — ya)| [ (e =) + e (e —w0)]
19t-onder: ~ LD [ (a2 — a3) + (2 — 43) + & (@t — wav)] [F @ — ) + (e — )] +
T aAsAn 2 |G By T Ta) T 5 Wu T Ya) ¥ G (Tulu T TaYd) | |C7 (Tr — L)+ g Wr — Y

Dy -D,

b [l — ) + 2 (0 — ) + o = zaa) | [eF (o = 20) + e (g — )] —

D -D,

4”A5An b2 [CZ@% —a}) 4+ e (Y7 — i) + ¢ (wryr — 331341)} [Cgl (x4 — zq) + cgl (Yu — yd)} +

D -D,

4”A3An by [cf (x] —xf) + 3 (7 — ) + ¢ (xryr — ziwn)] [C?z (T — Ta) + B (Yo — yd)} .

After substitution of the location set we have that the 0*-order terms are equal to Ay and the 1%%-order
terms are zero.

Finally we apply centered differencing for the first-order terms in .4; to obtain the approximation

ba, — b, b1, — by, > T, — 1Ty

2As +b2 2As 2An )

A =~ (D - D) <—b1

Substituting the interpolation values in equation (9) and collecting terms by order in h gives

Dy—D,
0th-order: — —I — 7+ [(b2c$1 _ b1cl%2)(!10r —x) + (bzcgl _ 51022)(% — yl)} [c?(:tu —q) + Cg(yu _ yd)} ,
4AsAn
15t order'—Mb by 2 2 bo( 2 2 by B T B T
-order: 1| (27 — a7) + cs?(yy — yi) + ¢ (@ryr — ) | [e7 (Tu — wa) + 5 (Yu — ya)| +

4AsAn

D” - D

IAsAn ba [CZI (@2 — 27) + 2 (7 — v7) + g (@ — »’Clyz)} (e (@0 — 24) + €& (yu — ya)] —

Dy —D,

4”A5An b [ci (27, — 23) + 3 (i — ya) + 6 (Tulu — Taya)] [C? (zr — 21) + B2 (yr — yl)} +

Dy —D,

4”A8An b [C4T($i —a3) + 5 (v — ya) + 6 (Tuyu — Taya)] [cl;l (2 — 1) + & (yr — yl)} .

After substitution of the location set (5) we have that the 0*"-order terms are equal to A; and the 1%*-order
terms are zero.

We call this method aligned Vandermonde or aligned symmetric depending on the coefficients. In practice
we decrease As and An with increasing anisotropy, and we may simply and safely take As = An.

10



3.3.2 Curvature Terms

The aligned schemes presented before assume that the direction does not change up to the interpolation
points r,l,u,d. Now we consider a numerical treatment of the terms b;,, b1, ,ba,,bs, based on field line
curvature. First we write the terms as

bls = Tss, bln = Ynn, b25 = UYss; b2n = —Tnn-
This leads to the following equations for S, N:

S = _b2ynn - blxnn;
N = _blyss + b2xss-
The curvature terms can be approximated by

Ir+xl 7yr+yl 7(17u+56d 71/u+1/d
TR T TRe o TmT TR YT Em

Tss =

(10)

where the positions r, [, u, d are not to be confused with the positions we used for the aligned stencil depicted
in figure 4. We are now explicitly looking for curvature. Given an interpolation function for b; and bo
within the stencil area we can apply tracing to find subsequent points. We go from the center point to the
interpolation points r, [, u, d by applying the (second-order accurate) modified Euler scheme (Heun):

tangential direction:
X; = Xg—1 £ AS"b(Tp—1,Yr—1)
1 * *
x, = X1 £ A (b(ei1,yh-1) +b(af i), k=1 K,
normal direction:
Xp = Xp—1 £ An*b i (Tp—1, Y1)
-
Xp = Xp—1 £ §An (br(zp—1,yr-1) +bi(wr, k), k=1,---K,

where K is the number of substeps, and where zo = yo = 0 (see figure 5). The values As = K As* and
An = K An* are used in equation (10).
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Figure 5: Approximate track of field line

Repeatedly stepping in s, n-direction and applying the interpolation of b increases the computational cost.
The benefit though is that we can easily control the accuracy with which we follow the field line, simply by
changing the number of tracing steps.

Still note that the approach to more accurately determine S, N can only improve the accuracy of A; and

11



As.

3.4 Exact Differentiation after Interpolation

We can also find a direct approximation of the various spatial derivatives involved in the anisotropic diffusion
operator, by writing the interpolation function (4) in terms of s,n and by taking the appropriate derivatives
of this rewritten function. Then, the interpolation functions for b1 and b need to be applied to find the final
form of the approximation. We use the non-conservative form

To = DyfL + Dofh, + 2V f7 + (P fT + (D) - DL) (ST = NfT),

where the terms with f represent the derivatives of the bi-quadratic interpolation functions for the quanti-
ties denoted by the superscript, i.e., f7 is the interpolation function for the temperature. The first-order
differentials are written as

DUFT + P £ = (Fby + e b2) (¢ b + ¢ b2) + (=L by + eFby) (=P by + B by).
The diffusive terms are given by

Dy fl+ D1 fl, =2D) (cabi + c5b3 + cebiba) + 2D 1 (cab3 + c5bf — cgbibs),

and the curvature-dependent terms by
1 1 1 1
(DH — DL) (SfST — Nf,?) = 2D|| |:C7 <b16?1 + 5b10§2 + Ebzcgl) + cg <b20§2 + 5()20?1 + §b10?2>:| =+
1 1 1 1
2D, {07 (bgcg2 - §blcg2 - 552021) + cg (blcé’l - 51720?1 - 551022)] :

The geometric term is recursive since b1, b2 depend on x, y whereas the latter depend on by, bo. We call these
methods interp. Vandermonde or interp. symmetric, depending on the coefficients that are used.

4 Numerical Results

In this section we show numerical results for two test cases. In both test cases b - VT is zero. This
foreknowledge is not used though; the general expressions A1, Az, A3 and A4 according to (3) are used. We
define the anisotropy as

D
D’
where D is one by default.

4.1 Constant Angle of Misalignment

As an initial test we consider a simple steady diffusion problem. The imposed exact solution reads:
T(x,y) = ay[sin (7z) sin (ry)]", 2,y € [0,1],

where s is large and the angle of misalignment « is set to a constant value. The solution simulates a
temperature peak. Computational results for this test case are given in figure 6. The error norm is defined
by .

_ |T - T|maw

€ — ——
> |T|mam ,
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:g: asymmetric —©— asymmetric

interp. Vandermonde

interp. symmetric
aligned Vandermonde
aligned symmetric

Figure 6: Error e, for test cases with constant angles of misalignment, s = 10, ¢ = 10%, at varying mesh
width, top: a = 5°, bottom: a = 30°, left: co-located, right: staggered. In the plots for the co-located
schemes all symmetric schemes overlap and likewise do all asymmetric schemes.

where T is the approximate temperature. It is clear from the figure that the symmetric schemes conserve
the order of accuracy independent of the anisotropy and angle of misalignment. The co-located schemes
are only slightly less accurate than the staggered. For larger values, the asymmetric schemes are less than
second-order convergent on coarse grids, but they regain second-order convergence on finer grids.

4.2 Varying Angle of Misalignment

Again the problem is considered on a square domain, this time described by —0.5 < z,y < 0.5. The following
steady-state solution is assumed on the domain

T(r)y=1-1% r=/a2+12.

The direction in which the parallel diffusion acts is given by

b_ﬁ(;y). (11)

Note that both V - b and b - VT are zero. This implies that the term A comes into play only due to
numerical errors. Term Ay is exactly zero since VD), VD, are zero. Test case 2 stresses terms A; and As,
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with added contribution due to numerical errors in term As.

symmetric, G. et al. symmetric, G. et al.
asymmetric, G et al. —O— asymmetric, G. et al.
interp. Vandermonde

107 interp. symmetric
aligned Vandermonde
aligned symmetric

10 10 10 10 10 10
h h
10° 10°
w0 w0 c—o0-6—6-6—6—6—=9
107 107
W 107} W 1070
107 107
symmetric, G. et al.
:2: asymmetric, G. et al.
100} interp. Vandermonde | 10°} 4
interp. symmetric
aligned Vandermonde symmetric, G. et al
aligned symmetric —O— asymmetric, G. et al.
-6 -6
05 2 1 05 2 1
10 10 10 10 10 10
h h

Figure 7: Error e, for test cases with varying misalignment, left: co-located, right: staggered, top: ¢ = 103,
bottom: ¢ = 10?

In figure 7, we study the accuracy of the various schemes for two anisotropic cases, one being extremely
anisotropic, ¢ = 10°. The main observation to be made from figure 7 is that for the extremely anisotropic
¢ = 10? case only the aligned symmetric scheme and the interpolated symmetric scheme preserve their
second-order of accuracy. All other schemes fail completely; they are all inconsistent for the ¢ = 107 test
case.

A detail to be observed from figure 7 is that for extremely high levels of anisotropy the staggered,
symmetric scheme of Giinter at al shows a wiggle in the error convergence. This is caused by the fact that
this scheme becomes less well-conditioned with increasing resolution. Giinter et al [9] had problems with
number representation for a fourth-order mimetic finite difference scheme. They resolved this by increasing
the number representation accuracy. Further, it can be shown that the analytical problem becomes ill-posed
for ¢ — oo (see Degond et al [22]).

Finally, in figure 8 we still make a more extensive study of the behavior of the different schemes at varying
anisotropy. Here, it appears again the better performance of our interpolated symmetric scheme and aligned
symmetric scheme; their errors do not increase at increasing anisotropy.
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Figure 8: eoo-error norm versus the anisotropy ¢ for N = 100

Conclusion

We have presented a new finite difference approach for problems with strong anisotropic diffusion. The
approach uses the concept of following the field line within the stencil area, to obtain the differencing points
that are finally used in the discretization. The approach works well in maintaining the order of convergence
independent of the level of anisotropy.
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