
Seventh International Conference on
Computational Fluid Dynamics (ICCFD7),
Big Island, Hawaii, July 9-13, 2012

ICCFD7-1303

Arbitrarily shaped particles in shear flow

M.D. de Tullio∗, G. Pascazio∗ and M. Napolitano∗
Corresponding author: m.detullio@poliba.it

∗ DIMeG and CEMeC, Politecnico di Bari, Italy.

Abstract: Particle motion in shear flow plays an important role in many industrial as well as
biomedical applications. In order to study the motion of differently shaped particles within a shear
flow, the incompressible Navier–Stokes and the rigid-body-dynamics equations are solved coupled
together by means of an implicit iterative approach. An immersed boundary method is used
to take into account the presence of moving particles within the fluid domain, without having to
regenerate or deform the computational grid. The method has been validated at first by computing
flows past a fixed and an oscillating circular cylinder at various values of the Reynolds number
(Re). Then, the motion of three differently shaped particles immersed within a low-Re Couette and
planar Poiseuille flow has been studied to ascertain their lateral migration and orientation behavior:
regardless of their initial position, the neutrally buoyant particles are observed to migrate toward an
equilibrium position, depending on the type of the flow. Finally, numerical solutions are presented
to understand the influence of increasing Re upon the lateral migration and orientation behavior
of the elliptic particle immersed in a Couette flow.
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1 Introduction
Particle motion in shear flows plays an important role in many industrial applications involving suspension
flows, such as transport and refining of oil, paper manufacturing, pharmaceutical processing and environ-
mental waste treatment [1]. The transport of arbitrarily shaped particles is of great importance also in
several biomedical applications: particles of various shapes, e. g., spheres, disks and rods [2, 3] have been
developed for controlling and improving the systemic administration of therapeutic and contrast agents.
Once administered, the particles are transported by the blood along the circulatory system until they reach
their targets, their shape playing a crucial role in the phenomenon. Understanding how the shape of the
particles influences their lateral migration and orientation within pressure driven flows could help enhancing
the design of more effective drugs.

The aim of this work is to develop a numerical tool able to resolve the flow field around arbitrarily
shaped particles and to predict their motion when transported by a shear flow, with particular emphasis
on the near wall dynamics. In order to achieve such a goal, the immersed boundary (IB) method [4, 5] is
more suitable than unstructured body fitted methods, since the governing equations are solved on a fixed
structured grid, insofar as it avoids the time-consuming regeneration or deformation of the grid and the
successive interpolation of the flow field. Among the various formulations of the IB technique, direct forcing
methods [6] are particularly attractive, since they can be easily implemented into existing finite-difference or
finite-volume structured solvers. Furthermore, they give very good results for fixed boundaries, also for the
compressible Navier–Stokes equations [7, 8], but their extension to fluid-structure-interaction (FSI) problems
has been shown to produce oscillatory hydrodynamic forces that are potential source of instabilities [9, 10].
The alternative direct-forcing scheme of Uhlmann [9], computing the forcing on Lagrangian markers (laying
on the immersed body) rather than Eulerian points, provides much smoother hydrodynamic forces, with the
requirement of a uniform distribution of the Lagrangian markers on the body. Vanella and Balaras [11],
improved Uhlmann’s approach [9], by using a versatile moving-least-square (MLS) approximation to build
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the transfer functions between the Eulerian and Lagrangian grids. Their method can handle arbitrary moving
and/or deforming bodies, giving accurate results comparable with that of costly alternative methods.

Here, such an approach is used to develop a very efficient numerical tool, based on a second-order-accurate
finite-difference fluid solver and on a fully coupled FSI algorithm to deal with the particle dynamics. The
solver adopts Cartesian non uniform grids, while the immersed boundaries are described by a triangulation
of their surface, independently of the underlying fluid mesh. Firstly, the method has been validated by means
of several test cases of increasing complexity: steady and unsteady flows past a fixed circular cylinder at
various values of the Reynolds number (Re); flow past a transversely oscillating circular cylinder; flow past
an elliptic particle sedimenting in a channel; flow past a a sphere falling under gravity in a fluid-filled box.
A good agreement has been obtained in all cases with both experimental and numerical results available in
the literature, also when bodies move and the FSI model is involved. Then, the method is used to simulate
the transport of single differently shaped particles within unidirectional (in the absence of particles) flows,
namely, Couette and plane Poiseuille flows. Only single and two-dimensional particles are considered, for
the time being, in order to evaluate the influence of their shape on their lateral migration, and for simplicity.

2 Computational method
The incompressible Navier–Stokes equations are discretized in space using second-order-accurate central
differences on a Cartesian staggered grid. The time discretization uses an explicit Adams–Bashforth scheme
for the non-linear terms and an implicit Crank–Nicolson scheme for the viscous ones:

û− un

∆t
= −α∇pn + γ Hn + ρHn−1 +

α

2Re
∇2 (û+ un) , (1)

where un denotes the velocity at the old time n, û is the intermediate solution, ∆t is the time step, H
contains the non-linear terms and α, γ and ρ are the constants of the Adams–Bashforth/Crank–Nicolson
scheme [12]. The resulting system is solved using a fractional-step method to obtain the intermediate non-
solenoidal velocity field û. In order to get a divergence-free velocity field, a scalar quantity ϕ is introduced
such that:

un+1 = û− α∆t∇ϕ (2)

By applying the discrete divergence operator to the equation above, an elliptic equation for ϕ is obtained:

∇2ϕ =
∇ · û
α∆t

(3)

The large-banded matrix associated with the elliptic equation is reduced to a penta-diagonal matrix using
trigonometric expansions (FFTs) in the spanwise direction, and the resulting Helmholtz equations are then
inverted using the FISHPACK package [13]. Finally, the pressure field is computed as

pn+1 = pn + ϕ− α∆t

2Re
∇2ϕ (4)

In order to overcome the presence of large fluctuations in the pressure and velocity fields arising when
using the linear interpolation forcing of Fadlun et al. [6], the MLS approximation of Vanella and Balaras [11]
is employed. On the basis of the alternative direct-forcing scheme suggested by Uhlmann [9], the forcing is
computed on the Lagrangian markers laying on the immersed surface, so as to satisfy the boundary condition,
and then transferred to the Eulerian grid-points. The MLS approximation was the key ingredient to build
a transfer functions between the Eulerian and Lagrangian grids, that is able to provide a smooth solution
also in the presence of arbitrarily moving/deforming bodies. The reconstruction procedure consists of the
following steps:

1. Compute the intermediate velocity û from equation (1) in all the ne Eulerian grid points surrounding
a Lagrangian point in its support domain. Here, the support domain is centered on the Lagrangian
point, and extends over ±1.6∆xi, where ∆xi is the local grid size in the i− th direction. In this way,
9 and 27 Eulerian points are considered in two and three dimensions, respectively.
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2. Compute the velocity at all the Lagrangian grid points corresponding to the non-solenoidal velocity
field:

Û(x) =

ne∑
k=1

φlk(x) ûk (5)

where φ is the transfer operator containing the shape functions and obtained minimizing with respect
to a(x) the weighted L2-norm defined as:

J =

ne∑
k=1

W (x− xk)
[
pT (xk)a(x)− ûk

]2
;

in the above equation, pT (x) is the basis function vector, a(x) is a vector of coefficients, x is the
Lagrangian grid-point position, and W (x − xk) is a given weight function. The exponential function
is used that can be written as:

W (x− xk) =

{
e−(rk/α)

2

rk ≤ 1
0 rk > 1

(6)

where α = 0.3 and rk is given by

rk =
|x− xk|
rw

(7)

rw being the size of the support domain.

3. Calculate the volume force F at all Lagrangian grid points, in order to get the desired velocity Ub at
the boundary:

F =
Ub − Û

∆t
(8)

4. Transfer F to the k Eulerian grid points associated with each Lagrangian grid point, using the same
shape functions used in the interpolation procedure, properly scaled by a factor cl, which is determined
by imposing that the total force acting on the fluid is not changed by the transfer:

fk =

nl∑
l=1

cl φ
l
kFl; (9)

nl indicates the number of Lagrangian points associated with the Eulerian point k. One can also verify
that the above scheme guarantees the equivalence of total torque between the Eulerian and Lagrangian
computational grids [11].

5. Correct the intermediate velocity by means of the forcing, so as to satisfy the boundary conditions at
the immersed body:

u∗ = û+ ∆tf ; (10)

this velocity field is not divergence-free and is projected into a divergence-free space by applying the
pressure correction which satisfies the Poisson equation (3).

The forces and moments acting on the immersed body are calculated in time by integrating the pressure
and viscous stresses over the immersed body surface. Given the surface discretization by nl triangular
elements, one has:

Ftot(t) =

nl∑
l=1

(τl · nl − plnl)Sl Mtot(t) =

nl∑
l=1

[rl × (τl · nl − plnl)]Sl (11)

where τl and pl are the viscous stress tensor and pressure, evaluated at the centroid of each triangle (location
of the Lagrangian marker, l), while rl is the distance of the Lagrangian point from the centroid of the body,
nl and Sl are the normal unit vector and area of each triangle. In order to evaluate the pressure pl and the
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velocity derivatives, (∂ui/∂xj)l needed for the viscous stress tensor, for each Lagrangian marker a probe is
created along its normal direction, at a distance hl, equal to the averaged local grid size. Using the same
MLS formulation described above, the pressure and velocity are evaluated on the probe location. Then, the
pressure on the markers is calculated as:

pl = ppl +
Dvl
Dt
· nl (12)

where ppl is the pressure at the probe and the second term of the right hand side takes into account the
acceleration of the marker, Dvl/Dt [10]. Concerning the velocity derivatives on the body surface, these are
considered equal to the velocity derivatives evaluated at the probe. This is equivalent to assume a linear
variation of the velocity near the body, a good approximation provided that the grid is sufficiently refined
near the body.

The evaluation of the flow and particle motion at each time step is carried out by a strongly coupling
scheme, since the prediction of the flow field and of the hydrodynamic loads requires the knowledge of
the motion of the bodies and vice–versa. An iterative implicit approach in considered, as reported in de
Tullio et al. [14]: for each time step, the convergence of the iterative procedure is verified by the condition
| vjp − vj−1p |< ε, where vjp indicates the body angular and linear velocities at iteration j. In all our
computations a tolerance of ε = 10−6 was used and the number of iterations required for convergence at each
time step varied from 1 to 6, depending on the flow configuration. In order to avoid numerical instabilities
in the FSI algorithm induced by the added mass effect, an under–relaxation of the forces (and moments) is
employed, according to Ftot = γF jtot + (1− γ)F j−1tot with γ = 0.9.

3 Results
Several test cases of increasing complexity are considered in order to validate the method and to show
its accuracy: a fixed circular cylinder in steady and unsteady conditions, a circular cylinder transversely
oscillating in a cross-flow with prescribed motion, an elliptic particle sedimenting in a confined channel, and
a sphere falling under gravity in a box. The results are compared with experiments and other numerical
results available in the literature. In the final part of the section the results of the transport of single
differently shaped particles in shear flows is provided.

3.1 Fixed circular cylinder
The case of the flow past a fixed circular cylinder is considered at first in order to validate the method.
Four values of the Reynolds number, based on the cylinder diameter D and the free-stream velocity U ,
are considered, namely, 20, 40, 100, and 200. The first two cases correspond to steady flow regimes and
the last two to unsteady ones. The computational domain is [−10D, 40D] × [−20D, 20D]. Inlet and outlet
boundary conditions are imposed on the vertical boundaries, while free-shear wall conditions are imposed
for the horizontal boundaries. A non uniform grid of 800× 700 nodes is used with a uniform grid spacing of
0.01D in the vicinity of the cylinder. The Lagrangian markers are distributed uniformly onto the cylinder
surface, with a spacing of 0.007D, that is equal to 0.7 the local Eulerian grid size in that area. The constant
time step used is ∆t = 0.001D/U . The length of the recirculating zone, L, the streamwise distance from the
cylinder back to the center of one vortex, a, the gap between the centers of the two vortices, b, appropriately
non-dimensionalized by the cylinder diameter, as well as the the drag coefficient, CD, for the two steady
cases, are provided in Table 1. The time histories of the viscous and pressure forces in the two Cartesian
directions for the case Re = 100 are given in Figure 1, while the computed drag and lift coefficients, CD
and CL, and Strouhal number, St, are reported in Table 2 for the two unsteady cases. Other numerical
and experimental results available in the literature are provided in the tables for reference, showing a good
agreement.
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Re=20 Re=40
L a b CD L a b CD

Coutanceau and Bouard [15] 0.93 0.33 0.46 – 2.13 0.76 0.59 –
Tritton [16] – – – 2.09 – – – 1.59
Linnick and Fasel [17] 0.93 0.36 0.43 2.06 2.28 0.72 0.60 1.54
Taira and Colonius [18] 0.94 0.37 0.43 2-06 2.30 0.73 0.60 1.54
de Palma et al. [7] 0.93 0.36 0.43 2.05 2.28 0.72 0.60 1.55
present 0.95 0.37 0.42 2.20 2.30 0.75 0.60 1.60

Table 1: Non-dimensional length of the recirculating zone, L, streamwise distance from the cylinder back
to the center of one vortex, a, gap between the centers of the two vortices, b, and drag coefficient, CD, for
the steady flow past a circular cylinder at Re = 20 and Re = 40. References [15],[16] provide experimental
results, while the others are numerical results obtained with different implementations of non-body conformal
methods.

Figure 1: Time histories of the force coefficients for the flow past a circular cylinder at Re = 100. CD,p
and CL,p are the pressure drag and lift coefficients respectively, while CD,v and CL,v are the drag and lift
coefficients due to viscous forces, respectively.

3.2 Oscillating circular cylinder in a cross-flow
The case of a circular cylinder transversely oscillating in a cross-flow is considered in order to validate the
method in case of a moving geometry with a prescribed motion. As showed by Uhlmann [9], in this case the
direct forcing approach of Fadlun et al. [6], can lead to large fluctuations of the hydrodynamic forces. The
Reynolds number, based on the cylinder diameter D and the free-stream velocity U , is equal to 185. Two
values of the ratio between the forcing frequency, fe, and the natural shedding frequency, f0, are considered,
namely, 1 and 1.2, with f0D/U = 0.195. The motion of the cylinder is given by y(t) = A0sin(2πfet), with
A0 = 0.2D. The same computational grid used for the fixed cylinder case is used, as well as the same
Lagrangian markers distribution and spacing. The constant time step used is ∆t = 0.001D/U . The time
histories of the lift and drag coefficients for the two cases are reported in Figure 2. The different behavior of
the force coefficients is captured accurately, and the results are in very good agreement with those obtained
by Vanella and Balaras [11], using a similar approach, and with those of Guilmineau and Queutey [21],
obtained using a body-fitted approach. A comparison between the drag coefficient obtained by the present
method and that obtained using the same simulations parameters but using the direct forcing of Fadlun
et al. [6] is provided in Figure 3. It is interesting to note that the anomalous oscillations of the force are
smoothed out by the the MLS formulation. Finally, the distribution of pressure and skin-friction coefficients,
Cp and Cf , respectively, on the cylinder surface are shown in Figure 3, at the time instant corresponding to
the extreme upper position, compared with the results of Guilmineau and Queutey [21]. The agreement is

5



Re=100 Re=200
CD CL St CD CL St

Berger and Willie [19] – – 0.16 - 0.17 – – 0.18 - 0.19
Linnick and Fasel [17] 1.34± 0.009 ±0.333 0.166 1.34± 0.044 ±0.69 0.197
Taira and Colonius [18] – – – 1.35± 0.048 ±0.68 0.196
de Palma et al. [7] 1.32± 0.010 ±0.331 0.163 1.34± 0.045 ±0.68 0.190
Le et al. [20] 1.37± 0.009 ±0.323 0.160 – – –
present 1.39± 0.010 ±0.331 0.168 1.39± 0.049 ±0.684 0.200

Table 2: Force coefficients and Strouhal number for the unsteady flow past a circular cylinder at Re = 100
and Re = 200. Reference [19] provides experimental results, while the others are numerical results obtained
with different implementations of non-body conformal methods.

good and the smoothness of the local forces coefficients is clear.

Figure 2: Force coefficients as a function of time for the case of a cylinder oscillating in a cross-flow,
fe/f0 = 1.0 (left) and fe/f0 = 1.2 (right)

.

3.3 Sedimentation of an elliptic particle
The dynamics of a single elliptic particle sedimenting in a confined channel is considered here to validate
the FSI procedure. In Figure 4 the geometrical parameters of the problem are reported. The aspect ratio,
α = a/b, where a and b are the major and minor axes, respectively, is set equal to 2, while the blockage
ratio is set equal to β = L/a = 4, being L the width of the channel. The density ratio, γ = ρs/ρf = 1.1,
where ρs and ρf are the particle and fluid densities, respectively. Considering the terminal settling velocity
of the particle, Ut, the major axis of the ellipse and the fluid kinematic viscosity, ν, the Reynolds number is
Ret = Uta/ν = 12.5, while the Froude number is Frt = Ut/

√
ga = 0.126, where g is the gravity acceleration.

The computational domain is [0, L]× [0, 7L]. The particle starts falling with the centroid in (0.5L, 6L), with
an initial angle of θ0 = π/4, to break the symmetry. No-slip wall conditions are imposed on the vertical
boundaries of the domain, while no-flow conditions are imposed on the horizontal boundaries. A uniform
grid of 301 × 2101 nodes is used with a grid spacing of 0.013a. The Lagrangian markers are distributed
uniformly onto the particle surface, with a spacing of 0.01a, that is equal to 0.77 the Eulerian grid size.
The constant time step used is ∆t = 0.001 a/Ut. In Figures 4 and 5 the present results in terms of particle
settling velocity, trajectory (location of center of mass) and orientation are compared with the numerical
results obtained by Xia et al. [22] by means of a finite-element method. The particle settles into the center
of the channel (x/L = 0.5) with a constant velocity, and sediments in a horizontal configuration (θ/π = 0).
The agreement of the results is very good.
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Figure 3: Left: comparison between the drag coefficient calculated using the present method (black line) and
that obtained using the forcing of Fadlun et al. [6]. Right: pressure (red line) and skin friction (green line)
coefficients, Cp and Cf for the case of a cylinder oscillating in a cross-flow, fe/f0 = 1.0, when it is located at
the extreme upper position. Continuous lines indicate the present results, while symbols indicate the results
obtained by body-fitted simulations by Guilmineau and Queutey [21].

3.4 Single sphere settling under gravity
To further validate the method, a three-dimensional case involving fluid-structure interaction is considered,
by simulating the motion of a sphere falling under gravity in a closed container. The group of ten Cate et
al. [23] performed experimental investigations by means of particle image velocimetry, providing an accurate
measure of both the sphere trajectory and velocity from the moment of its release until rest at the bottom
of the channel. Given the relative small ratio between the box width and the particle diameter, the full
flow field can be simulated under identical conditions. The Froude and Reynolds number are defined using
the sphere diameter, d, and the sedimentation velocity of a sphere in an infinite medium, u∞. In order to
determine u∞, the relation for the drag coefficient of Abraham [24] is used:

Cd = C0

(
1 +

δ0√
Re

)2

(13)

with C0δ
2
0 = 24 and δ0 = 9.06. Four different conditions are considered, with different density ratios, γ,

and parameters, as reported in Table 3. The computational domain considered is [0, 6.67d] × [0, 6.67d] ×

Re∞ γ u∞ (m/s) Fr∞ ∆t u∞/d
1.5 1.155 0.038 0.0991 0.0001
4.1 1.161 0.060 0.156 0.0005
11.6 1.164 0.091 0.237 0.0007
31.2 1.167 0.128 0.334 0.001

Table 3: Reynolds number, density ratio, settling velocity in an infinite medium, Froude number and non-
dimensional time step used in the simulation for the case of a sphere settling under gravity in a closed
channel.

[0, 10.67d], where the last is the gravity acceleration direction. The particle starts falling with the centroid
in (3.33d, 3.33d, 8d). No-slip wall conditions are imposed on the vertical boundaries of the domain, while
no-flow conditions are imposed on the horizontal boundaries. A uniform grid of 241 × 241 × 385 nodes is
used with a grid spacing of about 0.028d. The Lagrangian markers are distributed uniformly onto the sphere
surface, with a spacing of 0.02d, that is equal to 0.71 the Eulerian grid size. The constant time step used
depends on the case considered and is reported in Table 3. The sphere sedimentation velocity and trajectory
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Figure 4: Geometrical parameters for the elliptic particle sedimenting in a confined channel (left) and
sedimentation velocity (right). Present numerical results (continuous line) are compared with the numerical
results of Xia et al. [22] (dashed line).

Figure 5: Particle trajectory (location of center of mass) and orientation for the elliptic particle sedimenting
in a confined channel. Present numerical results (lines) are compared with the numerical results obtained
by Xia et al. [22] by means of a finite-element method (symbols).

are reported in Figure 6, where the present results are compared with the experimental data given in [23].
A very good agreement is obtained for all the configurations considered.

3.5 Transport of differently shaped single particles
The two-dimensional motion of a single particle, in an infinite channel is considered, in order to study its
lateral migration in shear flows and the influence of the particle shape. Feng et al. [25, 26] simulated the
motion of a single circular particle in planar Couette and Poiseuille flow using a finite element method. The
difference in the relative velocity across a solid particle may drive it to move laterally since the side with a
higher relative velocity may lead to a lower pressure. Therefore, they suggested that four mechanisms are
responsible for the motion in shear flows: wall lubrication repulsion; inertial lift due to shear slip; lift due
to particle rotation; lift associated with the curvature of the undisturbed velocity profile (for the case of
Poiseuille flow).

The reference particle considered here is the circular one, with diameter d. The channel height is h = 4d.
The computational domain is [−50d, 50d] × [0, 4d], with periodic boundary conditions in the horizontal
direction. In the vertical direction, no-slip wall is imposed at the lower surface of the domain, while the
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Figure 6: Numerical results (continuous lines) of the sphere sedimentation velocity and trajectory compared
with experimental results (symbols) of ten Cate et al. [23] at four Reynolds numbers.

h

Figure 7: Relevant geometrical quantities for the transport of a differently shaped particle.

upper surface has an imposed velocity, Uh. Three neutrally buoyant particles of different shape and equal
area are considered (see Figure 7): a circle, an ellipse, with a and b major and minor axes respectively and
a/b = 2, and an equilateral triangle, with side c. The particles are released in the channel at two different
initial positions, h0/h, equal to 0.25 (close to the wall) and 0.75 (close to the upper surface), with an
orientation with respect to the horizontal direction as shown in Figure 7. The Reynolds number considered,
Re, based on the reference length, d, the upper surface velocity Uh and the fluid kinematic viscosity, is
equal to 20, in order to include inertial effects in the phenomenon. The two flow configurations considered
are characterized by unidirectional flow in the absence of the particle. The first one is the case of null
pressure gradient in the streamwise direction, giving a Couette flow, with a linear velocity profile, when the
particle is absent; the second one is the case with a negative pressure gradient in the flow direction, so as
to have a plane-Poiseuille quadratic velocity profile when the particle is absent. In all cases, the particles
are first considered fixed, with their centroid at a distance h0/h from the wall, for a non-dimensional time
of tfixedUh/d = 10, under the shear flows. After that, the particles are released and start translating and
rotating in the channel. A uniform grid of 5000 × 200 nodes is used with a uniform grid spacing of 0.02d.
The Lagrangian markers are distributed uniformly onto the particle surface, with a spacing of 0.014d, that
is equal to 0.7 the local Eulerian grid size in that area. The constant time step used is ∆t = 0.005 d/Uh.

Ho and Leal [27] and later Vasseur and Cox [28] show that in conditions of low Reynolds number, neutrally
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Figure 8: Example of equilibrium particle position for the case of Re = 20 and linear velocity profile.

buoyant particles in a simple shear Couette flow will migrate toward the center plane because of the influence
of the walls (agreeing with experimental observations by Halow and Wills [29]). In the present simulations
for the Couette flow, the particles are observed to migrate toward the median plane of the channel, as
shown in Figure 8, regardless of their initial position and shape. The same results are obtained by Feng et
al. [26] for the cylindrical particle. Note that the migration velocity of the particles depends on the initial
conditions at the early migration stage. In [26] the particles start moving with the same fluid velocity at
their initial position, so that the time history of their results is different from the one presented here. Despite
these differences, the trends are alike. Figure 9 reports the particle vertical position, horizontal velocity and
angular velocity versus horizontal position, for the three particles. The cylindrical particle starting away
from the wall migrates rapidly toward the equilibrium position, while the one starting in the vicinity of
the wall reaches the same position more gradually. The ellipsoidal particle has the same behavior. The
triangular particle starting away from the wall rapidly migrates toward the wall, until the wall repulsion
pushes the particle toward the middle of the channel, as in the case of the particle starting near the wall.
It is worth noting that the centroid positions of the ellipsoidal and triangular particles exhibit a periodic
behavior, with a mean value that coincides with the middle of the channel. As indicated in Figure 9 (middle),
the particles have a translational velocity equal to that corresponding to the undisturbed flow in the same
position (indicated by a green dashed line in the figure), where for the case of the ellipsoidal and triangular
particles the mean velocity is intended. All the three particles rotate, with an instantaneous angular velocity
that depends on the geometry: a constant value is obtained for the circular particle, while periodic behavior
is observed for the other two. On the other hand, the mean value of the angular velocity for the ellipse and
the triangle, is almost equal to that of the cylinder, that is about the 47% of the constant shear rate of the
undisturbed flow field. This means that the particles rotate with the angular velocity of the flow field to
within a small correction, as found also by Feng et al. [26] for the cylindrical particle.

Segré and Silberberg [30, 31] studied the behavior of a neutrally buoyant ridig sphere in pipe flow by
means of experiments. They showed that solid particles migrate across streamlines in the presence of walls,
velocity profile curvature and buoyancy forces, unless the particle is so small that its relative motion with
respect to the fluid is negligible [32]. They also found that a neutrally buoyant particle will migrate to
an equilibrium position at about 60% from the center plane to the walls, in conditions of small but finite
Reynolds number. The effect was called the tubular pinch effect, because of the tube-like shape of the annular
region to which particles migrate. This was the first quantitative experimental evidence of lateral migration
of a sphere in unidirectional pipe flow of Newtonian fluid. In this work, two-dimensional conditions are
considered, so that, as indicated by Feng et al. [26], many features of the results of the present simulations
apply qualitatively to three-dimensional experiments, but quantitative comparisons are imperfect. In our
simulations, for the plane Poiseuille flow, there is in general a competition between inward and outward
forces, leading to an equilibrium position between the wall and the mid-channel, as shown in Figure 10.
The equilibrium position is reached regardless of the particle initial position, while the equilibrium position
is slightly dependent on the particle shape. The ellipse and triangle positions have an oscillatory behavior
around a mean value. The particles starting near the wall have a monotone behavior of the margination
velocity, moving toward the equilibrium position that is away from the wall. Particles starting away from
the wall, on the other hand, initially migrate rapidly toward the wall, reaching a position (closer to the wall
than the equilibrium position) where the wall repulsive force inverts the sign of their margination velocity,
and then reach equilibrium. It is interesting to note that, as indicated in Figure 10 (middle), considering the
average value of the particle translational velocity for the ellipse and the triangle, all the particles always lag
the local velocity of the undisturbed flow (indicated by a green dashed line in the figure). This result was also
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Figure 9: Particle vertical position (top), horizontal velocity (middle) and angular velocity (bottom) versus
horizontal position for the case of Re = 20 and Couette flow. From left to right: cylinder, ellipse and triangle.

found by Feng et al. [26] for the cylindrical particle, and is a well known effect in the limit of small particles
in slow flows [33]. All the three particles rotate, with an instantaneous angular velocity that depends on
the geometry. If we consider the mean values of the angular velocity for the ellipse and the triangle, all the
particles have the same value, within a small correction, that is about the 47% of local shear rate of the
undisturbed flow field.

In order to study the effect of the Reynolds number on the margination of particles, we concentrate our
attention to the case of the elliptic particle in Couette flow, at increasing Reynolds numbers. The angle θ
between the ellipse major axis and the horizontal direction is zero when the particle is released. Figure 11
reports the vertical position and θ/π versus horizontal position for some of the cases examined. Each single
elliptic particle migrates to the equilibrium position, which moves closer to the wall as the Reynolds number
increases. This final position is independent of the initial position (here only the results for h0/h = 0.75 are
reported). For the lower Reynolds numbers, particles always rotate, even when they are in the equilibrium
position, due to the applied shear force.

The behavior of θ is due to an angular velocity that is periodic in time, showing spikes to reach the
maximum value (not reported here; see Figure 9 for the case of Re = 20). In fact, as Re increases the
rotation of the particle is delayed, as shown in Figure 11 (right): the particle remains with an almost fixed
orientation with respect to the flow direction, and periodically experiences a 180◦ rotation, with period
increasing with Re. An interesting result for this particular case is found for Re > 77.5 in our simulations,
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Figure 10: Particle vertical position (top), horizontal velocity (middle) and angular velocity (bottom) versus
horizontal position for the case of Re = 20 and plane Poiseuille flow. From left to right: cylinder, ellipse and
triangle.

with the particle that exhibits no rotation: the particle remains at a fixed orientation with respect to the
current.

4 Conclusion and Future Work
This paper provides a numerical tool under development, which aims at resolving the flow field around
particles transported in shear flows, namely, a second-order-accurate finite difference fluid solver, coupled
with an implicit fluid-structure-interaction algorithm to deal with the fluid and particle dynamics. A suitable
immersed boundary method based on a moving-least-square approximation is employed, able to handle
arbitrary moving and/or deforming bodies and to obtain accurate and smooth hydrodynamic forces. The
method has been validated by means of several test cases of increasing complexity, involving flows past
fixed bodies, moving bodies with prescribed motion and bodies falling inside a fluid, so that fluid-structure-
interaction is also involved. A very good agreement has been obtained with experimental as well as numerical
results available in the literature. The transport of neutrally buoyant single particles in Couette and planar
Poiseuille flows, at small Reynolds number, is then presented. Three particles having identical area and
different shapes, namely, a circle, an ellipse and a triangle, have been considered so as to analyze the influence
of their shape on their lateral migration. The particles are observed to migrate toward an equilibrium position
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Figure 11: Vertical position (left) and angle between the major axis of the particle and the horizontal axis
(right) for the ellipse released at h0/h = 0.75, at different Reynolds numbers.

that depends on the type of flow, independently of their initial positions. Elliptic and triangular particles
reach the equilibrium position showing a periodic behavior around a mean value. For the Couette flow, the
particles travel with the same undisturbed fluid velocity corresponding to their vertical position, and rotate
with angular velocity very close to the constant one of the undisturbed flow. For the Poiseuille flow, the
particles migrate to an equilibrium position between the wall and the middle of the channel, and always lag
the local velocity of the undisturbed flow. Finally, the influence of increasing the Reynolds number (Re) on
the motion of the elliptic particle is studied in some detail: the time-averaged equilibrium position moves
toward the wall as Re increases. For small Res, the angular velocity of the particle is periodic in time and
reaches its maximum value through spikes. With increasing Re, the rotation period increases and eventually
rotation subsides, the particle remaining with its major axis almost oriented along the flow direction. In
this paper, only two-dimensional particles have been considered to test the methodology, although it is fully
three-dimensional. The method is very efficient and will be used as a very useful tool to understand the fluid
mechanics controlling the side forces, the turning moments and the effects of the wall on the migration and
the equilibrium position of the particles. Finally, particle-particle and particle-wall collision models will be
implemented, in order to enable the proposed methodology to investigate the transport of multiple bodies.
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