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1 Introduction
Computations of aerodynamic sound generation can be classified into different strategies according to the
extent of the CFD computational domain, where the Navier-Stokes equations are discretized, and the method
used for computing the acoustics [6]. Most CAA computations rely on an acoustic analogy and the so-called
Kirchhoff surface surrounding the main acoustic sources to predict the far field. The linear theory inevitably
breaks down when flow structures leave the computational domain. At one end of the strategies, the CFD
computational domain includes only the near-field region where the main acoustic sources are located. At
the other end, the CFD computational domain includes both the near-field and a large part of the acoustic
field. For subsonic flows [4], some difficulties can arise with this last strategy due to the large extend of the
CFD domain, the small energy level of the acoustic field and the precision of the numerical scheme or of the
artificial computational boundary treatment.

In [1] the authors investigated a strategy based on Euler/Navier-Stokes couplings using Schwarz waveform
relaxation methods. This strategy relies on a MPI-based parallel domain decomposition method in which
the Navier-Stokes equations are discretized only for the near-field and the Euler equations elsewhere, each
set of equations runs with its own specific time-space discetization which, for the Euler domain, means
sufficient discretization to catch the acoustic scales. The two computations (Navier-Stokes and Euler) can
run independently, except at some ’rendez-vous’ point in time where data between the different domains are
exchanged. For sake of simplicity, a Runge-kutta Discontinuous Galerkin formulation is used [3].

In the present paper, we compare closely the previous domain decomposition approach [2], with the overset
Chimera grid approach in which the CAA computational domain extends over the whole computational
domain and so can be meshed with an uniform Cartesian grid. In this case, the embedded CFD computational
domain is meshed independently according to the scales which have to be taken into account; in the overlaid
CAA-region, the nonlinear Euler equations in perturbation are discretized [5], the viscous effects being
wrapped up in the source term through a defect-like formulation. In that region, the acoustics are computed
twice, firstly in the CFD domain and secondly in the CAA domain: the reason being that some numerical
schemes can be good with CFD such as LES but can provide comparatively poor acoustics. Even if we use
the same high order scheme like Discontinuous Galerkin in both domains, the limiters needed for the CFD
computations deteriorate the pressure waves. Special attention is paid to the multi-scale aspect requiring
highly non conforming space-time discretization for which the discontinuous Galerkin approach is particularly
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well adapted.
For this study, both the near-field and the far-field have to be computed together, so, as many grid

configurations have to be tested and in order to have less computational effort, only two-dimensional flows
at low Reynolds numbers will be considered such as the sound emitted by the flow around a cylinder and by
vortex pairing in a perturbed mixing layer.

2 Numerical Discretization

2.1 Governing equations
The governing equations to be solved are the Euler and the Navier-Stokes equations in 2D for a compressible
flow which express conservation of mass, momentum and energy

∂tW + ∇ · F(W)− ∇ · FD(W,∇W) = 0 (1)

whereW = (ρ, ρ
−→
U , ρE) is the conservation variable vector with classical notations, F represents the Euler

fluxes:

F =
(
ρ
−→
U , ρ

−→
U ⊗

−→
U + pI ,

−→
U ( ρE + p )

)
(2)

and FD represents the diffusion and heat fluxes of the Navier-Stokes equations:

FD =
(

0 , τ , τ ·
−→
U + λ∇T

)
. (3)

Above ρ is the density,
−→
U = (u, v) the velocity, τ the shear stress tensor, p the pressure, T the temperature,

E = e + (u2 + v2)/2 the total energy with e the specific internal energy and λ is the thermal conductivity.
We assume the gas to be calorically perfect, with the heat capacities cv, cp and the Prandtl number constant
(Pr = 0.72). So, we can express e = cvT and λ = cpµ/Pr where µ is the dynamic viscous coefficient taken
constant or given by Sutherland’s law. The pressure p is given with the perfect polytropic gas state law
p = ρRT = (γ−1)ρe with R = cp−cv the specific gas constant and γ the specific heat ratio (γ = cp/cv = 1.4).
The Newtonian fluid hypothesis and the Stokes relation define the shear stress tensor in terms of the dynamic
viscosity coefficient µ and the gradient of the velocity:

τ = µ

(
∇
−→
U + (∇

−→
U )T − 2

3
(∇ ·
−→
U )I

)
. (4)

2.2 DG formulation
The Euler or the Navier-Stokes equations are solved in a domain Ω discretized by either a Cartesian or an
unstructured triangular grid Th =

⋃
Ωi and the associated function space Vh

Vh = {φ ∈ L2(Ω) | φ/Ωi ∈ Pk} (5)

where Pk is the space of polynomials of degree k.
The DG formulation based on a weak formulation after a first integration by parts is of the form : find

Wh in (Vh)4 such that for all Ωi in Th ,

∀φ ∈ Vh,
∫

Ωi
∂tWh φ dx =

∫
Γi

(Fh − FD
h ) φ dγ −

∫
Ωi

(Fh − FD
h )∇φ dx. (6)

Here, the numerical fluxes Fh,FD
h and Wh are approximations of F, FD and W . The Euler fluxes F are

classically determined using the LLF (Local Lax-Friedrichs) or HLLC fluxes ([8]); we will detail in the next
section the viscous flux computation through the EDG method.
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If we neglect locally the dependency of µ on temperature, the viscous term FD can be split into a linear
and a nonlinear part,

FD = L(∇
−→
U ,∇T ) +N (

−→
U · τ). (7)

A second integration by parts can be done on the linear part L(∇
−→
U ,∇T ) thus giving the following formu-

lation,

∀φ ∈ Vh,
∫

Ωi
∂tWh φ dx =

∫
Γi

(Fh − FD
h + L(

−→
U , T )) φ dγ

−
∫

Ωi
(Fh + L(

−→
U , T )−N (

−→
U · τ))∇φ dx.

(8)

Finally, we take in the space Vh a basis built locally with the Legendre polynomials, this basis being
orthogonalized for triangle elements. So, this formulation results in a system of coupled ordinary differential
equations of the form

M ∂tWh = R(Wh) (9)

where Wh is the vector containing the degrees of freedom (DOF) associated to Wh expressed in a basis of
Vh and M the mass matrix, which is diagonal, while R are the residuals which are nonlinear functions of
Wh. We have chosen the explicit time stepping RK3 of Shu-Osher [9] to solve (Eq. 9). As usual, the time
step is subject to a CFL-like restriction.

2.3 The EDG method

11

1
p

kW P

eR

2
p

kW P
p

r kW P

2

1

Figure 1: Definition of the elastoplast element (color
area) overlapping the interface between two triangular
elements Ω1, Ω2. .

We are only concerned here with the diffusion terms.
The simple idea of the EDG method is to regular-
ize locally the discontinuous solution Wh over each
edge using an L2 projection in a rectangular inter-
polation element E overlapping this edge (see Fig.
1). The basis in E of the same order k as the DG
basis defined in the elements, using on either side
of the edge an equal number of Gauss quadrature
points, which number provides at least the order of
the original solution.

More precisely, for any interface Γ between elements Ω1 and Ω2, the regularized solution in E is expanded
in the DG-Pk basis:

WE =
∑
p

W p
Eφ

p
E (10)

where φpE represents the DG-Pk basis functions and W p
E the unknowns which are computed by:

W p
E =

1

(φpE , φ
p
E)E

(∫
Ω1

⋂
E

W p
1 φ

p
Edx+

∫
Ω2

⋂
E

W p
2 φ

p
Edx

)
. (11)
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Above, W p
1 and W p

2 are the local DG-Pk solutions in Ω1 and Ω2, (•, •)E is the L2 product in E,

∀φ, ψ ∈ L2(Ω) (φ, ψ)E =

∫
E

φψdx (12)

All integrals are numerically computed using a n-point Gaussian quadrature rule with n defined such
that 2 ∗ n− 1 ≥ k, where k is the order of polynomials of the DG formulation.

Once the L2 projection is done, each conservation variable has a polynomial expression in the elastoplasts
E. Following the Cauchy-Kovalewsky procedure (cf. [10]), it is possible to introduce in E a space-time
approximation by expressing all time derivatives via spatial derivatives:



∂tW = − ∂F

∂W
· ∇W

∂t∇W = − ∂2F

∂W2
· (∇W)2 − ∂F

∂W
· ∇( ∇W)

∂ttW = − ∂2F

∂W2
· (∂tW)(∇W) − ∂F

∂W
· ∂t ∇W.

(13)

and so on, the needed quantities being computed ’au fur et a mesure’. Above, F stands both for the Euler
and the Navier-Stokes fluxes. In practice, the calculations are carried out componentwise. This space-time
approximation allows us to update the data in the elastoplasts only at the beginning of each time step and
not at each RK sub-iteration, the fluxes being updated using a time Taylor expansion.

As in [1],this idea of the elastoplast interpolation at the inter-elements is generalized to the Euler/Navier-
Stokes coupling.

3 Euler/Navier-Stokes Couplings

3.1 Domain decomposition coupling
3.1.1 Schwarz waveform relaxation methods

These methods are based on Schwarz domain decomposition algorithms, invented by H.A. Schwarz in 1870
[11]. In order to solve a Laplace equation in the domain Ω, it is split into two subdomains with overlap Ω1

and Ω2, in which the equation is solved alternatively. Exchange of information is made on the boundaries by
exchange of Dirichlet values. This algorithm has been extended by P.L. Lions to nonoverlapping subdomains
using different transmission conditions, such as Robin conditions [19]. For an extension to evolution problem,
we couple it to a waveform relaxation algorithm, which is an extension both of the Picard’s "approximations
successives" and relaxation methods for algebraic systems, due to Lelarasmee [18]. Versions with Dirichlet
or optimized Robin transmission conditions have been designed in [12] for the unsteady heat equation with
prescribed Dirichlet boundary conditions and initial data:

∂tu − ν 4u = f in Ω× [0, T ]

u(x, 0) = u0(x) in Ω

u = g on ∂Ω

(14)

where u is the temperature, ν is the constant diffusive coefficient and 4 represents the Laplace operator. A
parallel version of the Schwarz waveform relaxation algorithm can be generalized from a decomposition in
two domains Ω = Ω1 ∪ Ω2 associated with two spatial operators L1 and L2, and two interface operators B1

and B2 (called the transmission conditions) as
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Ω1 Ω2Γ1Γ2

t

x

y


∂tu

k
1 − L1u

k
1 = f in Ω1 × (0, T ),

uk
1(·, 0) = u0 in Ω1,

B1u
k
1 = B1u

k−1
2 on Γ1 × (0, T ),

uk
1 = g on (∂Ω1 − Γ1)× (0, T ),

∂tu
k
2 − L2u

k
2 = f in Ω2 × (0, T ),

uk
2(·, 0) = u0 in Ω2,

B2u
k
2 = B2u

k
1 on Γ2 × (0, T ),

uk
2 = g on (∂Ω2 − Γ2)× (0, T ).

If we take for the transmission operators Bj = Id, an overlap between the domains is necessary. Optimal
transmission conditions (Robin conditions) can be written for the heat equation as

Bj = ν∂nj + p , j = 1, 2 (15)

where nj is the unit normal exterior to Γj . The relaxation parameter p is determined asymptotically as a
function of the physical parameters, the size of the space-time domains and the mesh parameters (see [12]).
In that case we can use adjacent domains without overlap.

We have in [1] extended this algorithm for systems and more precisely by taking for operators L1 and
L2 the Navier-Stokes and the Euler operators respectively. The Dirichlet or the Robin conditions at the
interface will be applied in through an integral formulation computed with the relevant Gauss nodes. Notice
that ν = 0 for the Euler operator and that ν is no longer a constant for the Navier-Stokes operator.

3.1.2 Implementation

General technique: to compute Euler fluxes (resp. viscous fluxes) at interface boundaries, 3 gauss point
values are needed on the interface (resp. 9 gauss point values in the EDG cell). All necessary DOF are sent
to the other domain asynchronously so that fluxes can be computed in a transparent way, whether there are
rectangular or triangular elements.

Rectangle
Gauss
points
for  
triangle 
fluxes

Triangle
Gauss 
points
for  
rectangle
fluxes

Figure 2: Definition of the coupling in space.
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We have to couple the Schwarz sub-iterations (parameter k in the equations above) with the time stepping
(RK3) used in the domains Ω1 and Ω2, but with different time steps. We want to use a parallel algorithm.
Time windows are defined in such a way that time coincides on the two domains at the end of the time
window for both domains. Then the local CFL number is adjusted so that m time steps are performed
in domain Ω1 and n time steps are performed in domain Ω2 within each time window. Fig. 3 shows an
example of a whole Schwarz iteration in a time window defined at the interface between two domains D1,
D2. Here, the dots represent the DOF, the vertical arrows represent the full time steps, the horizontal red
lines represents the jth RK iterations and the horizontal arrows represent the exchange data for the parallel
computing. The Gauss DOF, which are to be interpolated at Gauss integration nodes in the domain D2, are
only represented for the domain D1. Notice that the blue and yellow Gauss DOF are interpolated in time
separately.

Figure 3: Definition of the coupling in time.

Sketch of one Schwarz iteration in a time window defined at the interface between two domains D1,
D2. Here, the dots represent the DOF, the vertical arrows represent the full time steps, the horizontal red
lines represents the jth RK iterations and the horizontal arrows represent the exchange data for the parallel
computing. The Gauss DOF, which are to be interpolated at Gauss integration nodes in the domain D2, are
only represented for the domain D1. Notice that the blue and yellow Gauss DOF are interpolated in time
separately.

Domains proceed in time independently, using at first predefined interface values. At the end of the
time window, domains exchange their newly computed boundary cells values for all time steps (including
sub times for the Runge Kutta scheme) and a new time march is carried out with updated interface values.
This iterative procedure is repeated till solution ceases to vary. This method allows for different time steps
and different space interface discretization as received values from other domains can be interpolated and
projected on the local time-space grid.

In time, when enough time steps exist per window, different quadratic interpolations are used to inter-
polate the DOF in the ghost element. Asynchronous exchange data are performed inside the time window
with few impact on the parallel computing time.

Notice that a non iterative algorithm could perhaps be devised as in [21] using an ADER procedure, but
as two or three iterations are generally sufficient to converge we take benefit of a very general and simple
algorithm.
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3.2 Hierarchical overset Chimera grid coupling
3.2.1 Euler equations in perturbation

If we consider the acoustics as a linear perturbation of the mean flow of the CFD flow field, the governing
equations of the CAA are the linearized Euler equations. An important issue of the coupling between the
CFD and the CAA is then to define the mean flow. In fact, as we want to limit the CFD domain as much as
possible, the coupling area (where Navier-Stokes and Euler are both defined) is located in a zone where the
nonlinear effects are very important and the linearized Euler equations are no more relevant within a fully
coupled approach. In that context, the Euler equations in perturbation open the door to an other interesting
possibility to a full Navier-Stokes computation.

Here, two overlapping domains are considered GNS and GCAA with GNS completely embedded in GCAA.
On GNS is computed a Navier-Stokes solution WNS .

∂tWNS + ∇ · F(WNS)− ∇ · FD(WNS ,∇WNS) = 0 (16)

with the same notations as in (Eq. 1).
On GCAA, the following decomposition is used : W = W0 +W ′ where W satisfies the Navier-Stokes

equations :

∂tW + ∇ · F(W)− ∇ · FD(W,∇W) = 0 (17)

and W0 is defined by the assumption that all viscous effects are described with W0, that is :

∇ · FD(W,∇W) = ∇ · FD(W0,∇W0) (18)

Thus the Euler equations in perturbation can be written:

∂tW ′ + ∇ · F(W) = −(∂tW0 − ∇ · FD(W0,∇W0) = RHS(t) (19)

Let P be the projection operator of the instantaneous values defined on GNS onto GCAA. W0 is ap-
proximated by P (WNS). Two approximations based on (Eq. 16) of the right hand side RHS(t) can be
made

RHS(t) = ∇ · F(P (WNS)) (20)
RHS(t) = P (∇ · F(WNS) (21)

3.2.2 Implementation

The implementation of this coupling is very close to the AMR techniques. One time step consists in two
stages:

1. The Navier-Stokes solution WNS is computed on GNS and projected onto GCAA providing W0 and
the right hand side for (Eq. 19).

2. The Euler equations in perturbation are then computed on GCAA providing new boundary conditions
for the Navier-Stokes problem on GNS .
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Figure 4: Chimera overlapping grids

(a) Global Mesh (b) Zoom

Figure 5: Chimera mesh seen from above

4 DDM versus Chimera
In our parallel context associated to the explicit time scheme, surrounding Euler domains (where the studied
acoustics waves reside) get their boundary values from the Chimera/Navier-Stokes domain from interpolated
(L2 projection) values on the EDG cell. For either approach (DDM or Chimera), these values will be the
same if the chimera domain is identical to the underlying domain and more accurate in the case of DDM if
more refined as there will be less interpolations.
For the Chimera/Navier-Stokes domain, it gets its boundary values from the Euler surrounding domains
again with an EDG technique. The main difference between the two methods is the additional underlying
Euler with perturbation domain in the case of the chimera approach.

5 Numerical Results
All computations are DG-P2, no limiters were used for either Euler or Navier-Stokes computations. For both
Cartesian and unstructured computations, we used the same functional space Vh. The triangular grid used
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has been obtained with the freeware mesh generator Gmsh [20]. In the following computations, all adjacent
computational domains slightly overlap over 10

5.1 Laminar flow around a cylinder at low-Reynolds number
This academic 2D test case is that of the flow around a cylinder [13]-[14]. A low Reynolds number based on
the diameter ReD = ρ∞u∞D/µ∞ = 500 is chosen in order to remain below the onset of 3D behavior, and
not to have to use limiters. The upstream Mach number is M∞ = 0.33 and we fix the cylinder diameter
D = 1, the freestream density is ρ∞ = 1 and velocity is u∞ = 1. On outside boundaries are imposed non
reflecting boundary conditions.

Figure 6: Cylinder: enlarged views of the composite mesh in the near-field vortex shedding region (up) and
about a CFD/CAA coupling boundary (down). In red is the overlapping zone.

All the space dimensions are scaled with the cylinder diameter D. The composite mesh consists of an
unstructured CFD mesh near the cylinder and a Cartesian uniform CAA mesh with a mesh spacing of
1 (Figure 6). The CFD domain extends arbitrarily 10D downwards and the CAA domain extends from
−150D to 300D. The unstructured mesh around the cylinder consists of 14000 triangles with 62 triangles
along the cylinder and 40 triangles at the boundary x = 10 (Figure 6-down). In order to suppress spurious
reflections of the acoustic waves at outflow boundaries, a sponge layer zone is introduced all around the
physical region(Figure 7).
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Figure 7: Cylinder configuration: the 25 computational sub-domains with instantaneous acoustic pressure
field.

The simulations are performed until time t = 300. This is sufficient to establish completely vortex
shedding and propagation of the acoustics to the full domain with a statically stationary flow field. Several
computations have been made. In all the computations, the Navier-Stokes equations are used in the CFD
mesh and the compressible Euler equations are used in the non-overlapped part of the CAA mesh.

The computation has been run with one to two Schwarz sub-iterations for the Euler- Navier-Stokes
computation for time windows the size of 10 Navier-stokes time steps and 2 to 3 Euler time steps, which allow
us to converge to sixth order for each time window. In the embeddded Navier-Stokes - Euler computation,
the Navier-Stokes domain computes 3 time steps against one time step for the Euler domain.

All three computations give similar instantaneous pressure fields and a Strouhal number of .23 .
Figure 8 shows instantaneous vorticity and acoustic pressure defined as pacou = (0.15246 p − 1)1e + 5.

Non-dimensioned vorticity color scale is between -1.5 and 1.5 and pressure color scale is between -200 and
200 Pa. This scale allows to emphasis the acoustic modes. As is to be expected, the acoustic radiation is
almost dipolar from the cylinder. The Von Karman vortex shedding in the near wake region is well described
and further diffused in the CAA domain. No spurious pressure wave reflections or sound sources are visible
in the instantaneous acoustic pressure contours.
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Figure 8: Flow around a cylinder at low Reynolds number: instantaneous acoustic pressure field (up) and
vorticity (down).

Remark on the role of upper and lower sponge layers: Without upper and lower sponge layers,
spurious reflections of pressure waves at the boundaries, due to approximate non reflecting conditions, can
lead to a non-physical pressure waves. The apparent origin of these waves is located at the vortex shedding
near the downstream boundary according to the symmetry chosen. Introducing a sponge layer only in the
downstream direction doesn’t suppress the phenomena as we can see in Figure 9.
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Figure 9: Instantaneous acoustic pressure fields around a cylinder without upper and lower sponge layers.

5.2 Sound generation in a 2D mixing layer
This second academic case is chosen to test the proposed methodology on another noise source mechanism
associated with flow instabilities in free shear flows. The flow configuration is the same as the one proposed
by Colonius, Lele and Moin [4]. It concerns the time-dependent flow of a compressible mixing layer. It
has been computed by many authors (see for example [13] with DG computations). As pointed out by
Gassner, LÖrcher and Munz [22], this test case is very challenging for a direct simulation of sound gener-
ation/propagation specially with DG because the numerical treatments at the artificial boundaries can act
as significant source of sound. Authors using finite difference schemes introduce low-pass filtering which are
difficult to extend in a straightforward manner to DG.

The upper and lower Mach numbers are M∞ = 0.5 and M−∞ = 0.25, respectively. Dimensioning with
the sound velocity, the upper and lower x-velocity, density and pressure can take the values u∞ = 0.5,
u−∞ = 0.25, ρ∞ = ρ−∞ = 1 and p∞ = p−∞ = 1/γ, respectively, with γ = 1.4. An hyperbolic tangential
shape velocity profile is define:

u = ū + 0.125 tanh(2y) (22)

with ū = (u∞ + u−∞)/2. Lengths are normalized with vorticity thickness of the layer at x = 0:

δω =
∆u

(du/dy)max

∣∣∣∣∣
x=0

(23)

with ∆u = u∞ − u−∞.The Reynolds number Re = ρ∞∆uδω/µ defined by the velocity jump, vorticity
thickness and dynamic viscosity at the free-stream temperature is set to 250. Equal temperature through
the mixing layer is assumed and the dynamic viscosity is taken constant.

In order to investigate the sound generated by vortex roll up and pairings, the mixing layer is forced at
its most unstable frequencies. Disturbances are added to the initial mean velocity profiles, corresponding to
a fundamental frequency f = ω1 and subharmonic frequencies f/2, f/4 and f/8:
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
u′ =

4∑
k=1

ak
yū

πωkb
sin(2πωkt+ φk) exp(−y2/b)

v′ =
4∑

k=1

akcos(2πωkt+ φk) exp(−y2/b)

(24)

where b = 5 is the y-modulation and ak are the amplitudes of the disturbances. The fundamental frequency
f = ω1 is 0.0501 and the phase shifts φk, k =2,3,4 of the sub-harmonics are: -0.028, 0.141 and 0.391. The
amplitudes of the disturbances are a1 = 0.0037, a2 = 0.0073, a3 = 0.007 and a4 = 0.0103. This provide a
standard mean divergence-free disturbances to the mixing layer in an efficiently excited mode.

The physical region extends to 0 ≤ x ≤ 400 and −200 ≤ y ≤ 200. A sponge layer is added downstream,up
and above from x=400 to x=672 and from y=200 (resp. y=-200) to y=1000 (resp. y=-100)(see Figure 10)
meshed with a stretched coarse grid (20 grid nodes) along the each direction. Euler equations are solved
everywhere except in the near-field mixing region which extends to 0 ≤ x ≤ 400 and −10 ≤ y ≤ 10 where
the Navier-Stokes equations are solved. The location of the upper and lower boundary has been placed
intentionally too close with respect of the mixing layer boundary in order to test the present coupling
method.
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Figure 10: Mixing layer configuration: the 15 computational sub-domains with initial velocity, global view
(up) and enlarged view (down).
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The CAA domain is meshed with a uniform Cartesian grid and a grid meshing of 1. The NS computational
domain is meshed using a 1001 x 61 Cartesian grid built as in [3], with equally spaced nodes in the x-direction
and stretched in the y-direction, using the mapping

y =
Ly

2

sinh(byη)

sinh(by)
(25)

where the length in the y direction is Ly = 20 and the stretching factor by = 2.4. The equally spaced mapped
coordinate η runs from -1 to +1. This corresponds to a smooth stretching in the normal direction with a
grid spacing of ∆y = 0.15, ∆x = 0.2 in a region round y = 0 so that about 12 grid points are inside the
initial mixing layer (see Figure 11).

Figure 11: Mixing layer: enlarged view of the composite mesh near CFD/CAA coupling boundary. In red is
the overlapping zone.

Non reflecting conditions are imposed on the upper and lower boundaries and on the downstream bound-
aries of the sponge domains.
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Figure 12: Results for the mixing layer test case with a CFD/CFD coupling: instantaneous acoustic pressure
field (up) and vorticity (down).

The simulations are performed until time t = 1200, corresponding to about 30 periods of the fundamental
frequency f . This time is probably too small to obtain a quasi-permanent state but is sufficient to establish
the vortex roll up and pairings in the physical region under consideration. The resulting flow field is highly
organized with three main vortex pairings located approximately at x = 75, x = 150 and x = 250. These
vortex pairings act as sound sources of respectively frequency f/2, f/4 and f/8. The generated acoustic
field is dominated by the interference of the waves emitted. Unfortunately, a strong mode appears at the
downstream boundary and then overtakes progressively all the other modes. The apparent origin of this mode
seems to be further in the sponge zone. Whether this mode is a spurious one or not is not clear and more
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investigations are needed to answer this. Other authors also seem to have experienced this (see for example
[13]. In order to identify the first three aeroacoustic sources, authors generally cut their computational
domain before x = 300 (see for example [23]).

Different computations have been run in order to investigate the potentiality and the limits of the proposed
coupling methods. The first one concerns a CFD/CFD coupling in the near-field domains mesh with the
same grid. Figure 12 shows instantaneous vorticity and acoustic pressure defined as pacou = (γ p− 1)1e+ 5.
Non-dimensioned vorticity color scale is between 0 and 1.5 and pressure color scale is between -150 and 150
Pa. As the grids used in this computation are conformal in the x-direction, the results are supposed to be
reference ones. In Figure 13, we can notice the good coupling between the different zones. Notice that, in
this computation, the non-conforming Euler/Navier-Stokes coupling in the y-direction does not produce any
spurious mode.

Figure 13: Instantaneous acoustic pressure distribution along the x-axis for the mixing layer test case with
a CFD/CFD coupling.

Figure 14 shows the same fields for a CFD/CAA coupling. The CAA grid used in this computation
has a grid meshing of 2, which emphasize the problems obtained with a grid meshing of 1. In Figure 15,
we can notice visible discontinuity in pressure distribution between the different zones. Notice that, in this
computation, spurious modes appear at the coupling coordinates x = 200 and x = 400.
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Figure 14: Results for the mixing layer test case with a CFD/CAA(dx=2) coupling: instantaneous acoustic
pressure field (up) and vorticity (down).
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Figure 15: Instantaneous acoustic pressure distribution along the x-axis for the mixing layer test case with
a CFD/CAA(dx=2) coupling.

6 Conclusion
An Euler/Navier-Stokes coupling akin to a chimera approach for multiscale aeroacoustic problems has been
presented within the framework of DG. The EDG scheme which gives an accurate discretization of the viscous
fluxes has been used for the Navier-Stokes computations.

In the EDG scheme, discontinuities are removed at each interface between elements by an L2 projection
on a staggered rectangular element whatever the shape elements is, called elastoplast. We generalized this
technique to remove discontinuities, both in space and time, between computational domains due to non
conformal grids. The EDG technique applied to the Euler/Navier-Stokes coupling is what makes the domain
decomposition approach and the chimera approach similar.

The present study shows qualitative results of the possibility of the present approach. A qualitative
comparison with an acoustic analogy prediction should be performed in the future to completely validate
this approach. Nevertheless, first results presented on vortex shedding problems open the door to a new
strategy for numerical acoustics with a strong coupling between CFD and CAA. Many points remain to be
analysed such as more accurate outflow boundary conditions or improving the Schwarz algorithms.

This type of coupling has been numerically evaluated on the test case of the flow around a cylinder
at low Reynolds number. As could be done for more complex applications, in 3D for example, we would
use Cartesian grids for the acoustic simulations and unstructured meshes for the Navier-Stokes simulations,
in particular near the cylinder. This first parallel result shows the interest of the domain decomposition
technique in terms of computational cost versus a full Navier-Stokes computation. For very low Reynolds
number, optimized transmission condition will have to be defined. For technical reasons, no results with the
coupling in volume are available yet. Further work will consist in comparing the Chimera approach with the
Schwarz relaxation technique on a detailed acoustic simulation.

Finally developments will include 3D simulations. For that purpose, the explicit time stepping of the
Navier-Stokes solver will be replaced by an implicit one, as for example a space-time DG approach.

19



References
[1] Borrel M., Halpern L. & Ryan J. Euler/Navier-Stokes coupling for aeroacoustic problems, Proceedings

of the ICCFD6, Computational Fluid Dynamics 2010, Springer Ed.
[2] Borrel M., Halpern, L. & Ryan J. Euler/Navier-Stokes couplings for multiscale aeroacoustic problems,

AIAA paper, 2011-3047.
[3] Borrel M. & Ryan J. The Elastoplast Discontinuous Galerkin method (EDG) for the Navier-Stokes

equations, Journal of Comput. Physics, vol. 231, issue 1, pp. 1-22, 2012.
[4] Colonius, T. ,Lele S.K. & Moin, P. Sound generation in a mixing layer, J. Fluid Mech., pp. 375-409,

1997.
[5] Desquesnes, G. Euler equations in perturbation 2.5-D: a new system for acoustic modal propagation,

AIAA paper 2008-2822.
[6] Lighthill, M.J. Report on the final panel discussion on computational aeroacoustics, ICASE Report

92-53, 1992.
[7] Marsden O., Bogey C. & Bailly C. High-order curvilinear simulations of flows around non-Cartesian

bodies, Journal of Comput. Acoustics, Vol. 13, No. 4, pp 731-748, 2005.
[8] Toro E. F. , Spruce M., Speares W.: Restoration of the contact surface in the HLL-Riemann solver,

Shock Waves 4, , 25ï¿¡34 (1994).
[9] Shu C.-W. & Osher S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes,

J. Comput. Phys. 77 , 439-471 (1988).
[10] Titarev V.A. & Toro E.F.: ADER schemes for three-dimensional nonlinear hyperbolic systems,Isaac

Newton Institute for Mathematical Sciences Preprint Series, 2003.
[11] Schwarz H. A. Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschrift der Natur-

forschenden Gesellschaft in Zürich, 15, 272–286 (1870)
[12] Bennequin D., Gander M.J., Halpern L: A homographic best approximation problem with application to

optimized Schwarz waveform relaxation. Math. Comp. 78, 185–223 (2009).
[13] Dumbser M.: Arbitrary high order PNPM schemes on unstructured meshes for the compressible

NavierŰStokes equations, Computers & Fluids 39 (2010), 60-76.
[14] Marsden O., Bogey C. and Bailly C. : High-order curvilinear simulations of flows around non-cartesian

bodies, Journal of Computational Acoustics, Vol. 13, No. 4 (2005) 731–748.
[15] Gander M.J., Halpern L., Japhet C. and Martin V: Viscous Problems with Inviscid Approximations in

Subregions: a New Approach Based on Operator Factorization, ESAIM Proc 27, 272–288 (2009).
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