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Abstract: The near-field of a buoyant plume exhibits puffing behaviour characterised by the
periodic formation of vortical structures (puffs). In this study, a plume is generated from a finite-
width fixed temperature planar source. The periodic formation of puffs is seen to be associated
with an instability in the thermal boundary layer that forms on the heated source region away from
the plume axis. The instability produces a bulge in the thermal boundary layer, that is further
investigated by modelling the boundary layer flow in the vicinity of the plume source by use of a
channel flow with a heated floor section.
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1 Introduction
The near-field behaviour of a buoyant plume in the transitional regime is characterised by the periodic
formation of vortical structures (puffing). Such behaviour has been observed for forced axisymmetric plumes
[1, 2, 3, 4], for forced planar plumes [5, 6], for a pure thermal axisymmetric plume [7] and for a pure thermal
planar plume recently by Hattori et al. [8]. Similar plume behaviour has also been observed in the transitional
ventilated filling box flow with a line heat source in Hattori et al. [9].

Plourde et al. [7] observed for a pure thermal axisymmetric plume the puffing is associated with an
instability of the lapping flow, which develops on the heated source region on either side of the plume axis,
forming a thermal plumelet (bulge), that eventually merges with and surrounds the central ascending column.
We also observed for a pure thermal planar plume the bulge forming and its growth along the lapping flow,
which eventually surrounds the central column, in the present study and in our recent study [8], which
provided experimental validation for the near-field unsteady behaviour that is numerically investigated.

We will focus on the near-field plume instability, namely the bulge forming in the lapping flow, and the
associated puffing behaviour. The formation of the bulge and its dependence on the lapping flow velocity
along the bottom boundary are further investigated by modelling the boundary layer flow in the vicinity of
the plume source by a channel flow with a heated floor section, providing an additional control parameter.
Three dimensional direct numerical simulations are used to obtain the near-field planar plume flow and
the channel flow, both with Prandtl number of 7.0 and Reynolds numbers in the range 200 ≤ Re ≤ 1000.
Three-dimensional effects were found to be small in this flow for the range of Re considered.

2 Problem definition
The computational domains are shown in Figures 1a and 1b for the planar plume and the channel flow
with a heated floor section, respectively. A channel height of 0.5 is used. The governing equations are the
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non-dimensional, incompressible Navier-Stokes equations with the Boussinesq approximation for buoyancy.
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where i = 1, 2, 3 and j = 1, 2, 3. x1 = x, x2 = y and x3 = z are the coordinates as shown in Figures
1a and 1b, and t is time. u1 = u, u2 = v and u3 = w are the velocity components in the x, y and
z directions, respectively. p is the pressure perturbation and T the temperature perturbation given as
T = (T ∗ − T ∗∞) / (T ∗s − T ∗∞), where T ∗ is the dimensional local temperature, T ∗∞ the dimensional ambi-
ent temperature and T ∗s the dimensional source temperature. The superscript, ∗, is used for dimensional
quantities.

Control parameters for the plume are the Reynolds and Prandtl numbers. The Reynolds number is
defined as Re = U∗L∗/ν∗, where U∗ =

√
g∗β∗(T ∗s − T ∗∞)L∗, with L∗ the plume source width, ν∗ the

kinematic viscosity, g∗ the gravitational acceleration, and β∗ is the thermal expansion coefficient. The
Prandtl number is Pr = ν∗/κ∗, with κ∗ the thermal diffusivity. In the case of the channel flow with a heated
floor section, in addition to the above two parameters, the inlet velocity (uin) is controlled to vary a Froude
number, defined as Fr = U∗

δ∗T
/U∗, where U∗

δ∗T
is the average horizontal velocity in the thermal boundary

layer, of thickness δ∗T , obtained as U∗
δ∗T

=
∫ δ∗T
0
〈u∗〉dy∗/δ∗T , with 〈〉 the time averaging operator.

3 Numerical method
For the study, a non-staggered, Cartesian mesh, finite volume code [10], written in the fortran90 language,
was used . The code is based on a fractional step method (the P2 pressure correction method) [11], with the
Adams-Bashforth and Crank-Nicolson time discretisation schemes being used for the advection and diffusion
terms, respectively. In the code, the transport equations (Equations (1) and (2)), discretised in the forms
below, were solved for u†i , a velocity estimate, and Tn+1, respectively (the following discretisations are based
on a constant time stepping size, ∆t):
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where A is the discrete advection operator, G the discrete gradient, L the discrete Laplace operator, and
the superscripts, n and n + 1, are the previous and current time steps, respectively. The Poisson pressure
correction equation was discretised in the form:

∆tL (pc) = D
(
u†i

)
, (6)

where pc is the pressure correction term with D the discrete divergence, and was solved for pc. A divergence-
free velocity field is then obtained by correcting velocities with:

un+1
i = u†i −∆tG (pc) . (7)

The cell face values for velocity required in the right hand side of Equation (6) and for the advection velocities
in Equations (1) and (2) or (4) and (5) were interpolated using Rhie-Chow interpolation method [12] in order
to avoid checkerboarding in the pressure field, where pressures on odd and even nodes are uncoupled.

The spatial discretisations for the diffusion terms in Equations (1) and (2) used second-order central
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(a) Plume flow

(b) Chanel flow

Figure 1: Computational domains for the plume flow and the channel flow with a heated floor section
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differencing. The spatial discretisations for the advection terms in Equation (1) used second-order central
differencing, while those in Equation (2) used fourth-order central differencing with the ultra (Universal
Limiter for Tight Resolution and Accuracy) flux limiter [13] in order to avoid instability due to a large cell
Peclet number, Pe = ui∆xi RePr.

The Strongly Implicit Procedure (sip) [14] was used for Equations (1) and (2), and the Bi-Conjugate
Gradient Stabilised method (bicgstab) [15] using a sip preconditioner was used for the Poisson pressure
correction equation. Using the P2 pressure correction method [11], the solver is computationally efficient,
with each of Equations (1) and (2) and the Poisson pressure correction equation, being solved only once per
time step. Convergence criteria were applied to ensure that the divergence was kept below ∼ 1.0 × 10−10

at each time step. For both the plume and channel flows, the time step, ∆t, was varied to maintain the
Courant number (= ui∆t/∆xi) within the range 0.15− 0.3.

For the plume flow, the following boundary conditions were imposed:

• The bottom boundary is a rigid, no-slip wall, where all the velocity components are zero. The thermal
source in the region −0.5 ≤ x ≤ 0.5 is maintained at T = 1, and the rest of the bottom boundary is
maintained at T = 0. For the pressure correction, a Neumann condition with zero normal derivative is
applied. The pressure perturbation, p, on the external node is obtained by a second order extrapolation
from the interior.

• At the x boundaries, a Neumann condition with zero normal derivative is applied for the normal
velocity component, u, and the tangential velocities, v and w, are zero. The temperature perturbation,
T , is set to zero for inflows, while a Neumann condition with zero normal derivative is applied for
outflow temperatures. Both p and the pressure correction are zero.

• At the top boundary, a Neumann condition with zero normal derivative is applied for all the velocity
components and T , with the normal velocity component, v, only taking a positive value, i.e. no inflow
is allowed. Both p and the pressure correction are zero.

• The periodic condition is employed for the z boundaries.

For the channel flow with a heated floor section, the following boundary conditions were imposed:

• The bottom boundary is a rigid, no-slip wall, where all the velocity components are zero. The heated
floor section 3.0 ≤ x ≤ 3.5 is maintained at T = 1, and the rest of the bottom boundary is maintained
at T = 0. For the pressure correction, a Neumann condition with zero normal derivative is applied,
and p on the external node is obtained by a second order extrapolation.

• The top boundary is a slip plane where a Neumann condition with zero normal derivative is applied
for the tangential velocities, u and w, and T , while the normal velocity component, v, is zero. For the
pressure correction, a Neumann condition with zero normal derivative is applied, and p on the external
node is obtained by a second order extrapolation.

• At the left inlet boundary, the normal velocity component, u, is set to a constant velocity, uin, while
the tangential velocities, v and w, are zero. T is set to zero. For the pressure correction, a Neumann
condition with zero normal derivative is applied, and p on the external node is obtained by a second
order extrapolation.

• At the right outlet boundary, a Neumann condition with zero normal derivative is applied for all the
velocity components and T , with the normal velocity component, u, only taking a positive value, i.e.
no inflow is allowed. Both p and the pressure correction are zero.

• The periodic condition is employed for the z boundaries.

For the plume flow, a uniform grid was used both in the y and z directions, while for the discretisation
in the x direction a uniform grid was used in the region −1.0 ≤ x ≤ 1.0 and a nonuniform grid with one
percent linear stretching was used in the regions x < −1.0 and x > 1.0. The effects of the grid size, the
domain size and the time for calculating statistics on the solution accuracies were examined for the case
with Re = 1000. It was found that statistical solutions obtained with the domain size of X × Y × Z =
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4.0 × 1.5 × 0.5 over the time, t = 40 − 100, show negligible variations with respect to those obtained with
extended domain sizes and longer times for statistics calculation. It was further found that using the grid
size, ∆x×∆y×∆z = 0.01× 0.0063× 0.01 (in the region of a uniform grid), with the number of grid points,
Nx×Ny×Nz = 338×240×50, both the statistical and transient solutions show a negligible grid dependency.
Three-dimensional effects were shown to be small, with the magnitude of w typically below 1.0 × 10−3 for
Re = 1000 (in comparison, the magnitudes of u and v are in the order of 10−1), and it reduces with reducing
Re.

For the channel flow with a heated floor section, a uniform grid was used in all directions. As with the
plume flow, the effects of the grid size, the domain size and the time for calculating statistics on the solution
accuracies were examined for the case with Re = 1000 and uin = 0.1. For the examination of the domain size
dependency, the domain sizes in the x and z directions were varied, while the domain size in the y direction,
i.e. the channel height, was fixed at y = 0.5. It was found that statistical solutions obtained with the domain
size of X × Y × Z = 5.0× 0.5× 0.5, over the time, t = 40− 100, show negligible variations with respect to
those obtained with extended domain sizes and longer times for statistics calculation. Further, using the grid
size, ∆x×∆y×∆z = 0.02× 0.0083× 0.025, with the number of grid points, Nx×Ny ×Nz = 250× 60× 20,
both the statistical and transient solutions were found to show a negligible grid dependency.

4 Results

4.1 Bulge forming instability and its parametric dependence
The instantaneous temperature fields are shown for cases with and without the bulge formation for the plume
and channel flows in Figures 2 and 3, respectively. The lapping flow develops over the heated region. The
red arrows are shown to indicate the directions of the lapping flow velocity. For plumes, the heated fluid in
the lapping flow flows towards the central axis due to the entrainment by the central column. Figures 2b
and 3b show the formation of bulges along the lapping flow. In Figure 2b, the formation of a puff along the
plume axis is also shown. It is observed in both flows that the thickness of the thermal boundary layer is
thinner for the higher Re, therefore it is considered that at a higher Re the Rayleigh-Taylor fluid layer is
more sensitive to a small perturbation and hence is more likely to form the instability bulges.

The Froude number is defined as Fr = U∗
δ∗T

/U∗ with U∗
δ∗T

=
∫ δ∗T
0
〈u∗〉dy∗/δ∗T in Section 2. In terms of

non-dimensional quantities, it reduces to:

Fr =
∫ δT

0

〈u〉dy/δT , (8)

where δT is the non-dimensional thickness of the thermal boundary layer. We define δT as the vertical
distance measured from the bottom boundary to the location where the mean temperature, averaged in the
z direction, 〈T 〉, reduces to 0.01, at the location, 0.1 downstream of the beginning of the heated region, i.e.
x = ±0.4 for the plume flow and x = 3.1 for the channel flow. For the plume flow, the vertical profiles
of 〈T 〉 and the mean horizontal velocity, averaged in the z direction, 〈u〉, at the locations, x = ±0.4, were
averaged. For both the plume and channel flows, Fr was then calculated using Equation (8) at the location,
0.1 downstream of the beginning of the heated region. The values of Fr obtained in this way are shown in
Tables 1 and 2 for the plume and channel flows, respectively.

In order to obtain a scaling relation for the mean thickness of the lapping flow thermal boundary layer,
the balance equation for temperature is considered. For the mean lapping flow, adjacent to the bottom
heated section, the horizontal advection term dominates, and the vertical and spanwise advection terms are
considered to be small. Further, the vertical diffusion term dominates, and the horizontal and spanwise
diffusion terms are considered to be small. Hence, Equation (2) reduces to:

∂〈uT 〉
∂x

≈ 1
RePr

∂2〈T 〉
∂2y

. (9)
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Further,
〈u〉〈T 〉

x
∼ 1

RePr
〈T 〉
y2

. (10)

Therefore, at a fixed horizontal location, the thickness of the thermal boundary layer scales as:
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1
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where 〈uadvec〉 is the mean horizontal advection velocity, which may be assumed to be the average horizontal
velocity in the lapping flow thermal boundary layer, that is Fr =

∫ δT

0
〈u〉dy/δT , hence:
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This is consistent with the correlation given in Fujii [16], i.e. δT ∼ 1/ Pr
1
2 , and also with Figures 2 and 3 both

showing a reduction in δT with an increase in Re. From Equation (12), for a fixed Pr, δT ∼ 1/
(
Re

1
2 Fr

1
2

)
.

The average of 〈T 〉 at x = ±0.4 is plotted over the normalised height, y Re
1
2 Fr

1
2 , for the plume flow with

different Re in Figure 4, and 〈T 〉 at x = 3.1 for the channel flow with different Re and uin in Figure 5. It is
shown that 〈T 〉 falls onto a single curve in both cases, which validates the scaling relation obtained above.

Figure 6 contains a mapping of bulge formation against Re and Fr for the results shown in Tables 1 and
2. The formations of the bulges for both the plume and channel flows, and the puffs for the plume flow, have
been examined by studying the flow animations for each case. For the channel flow, the bulge formation is
shown to depend on Re and Fr. For the plume flow, the formation of puffs along the plume axis has been
observed to be associated with the formation of bulges in the lapping flow, and the formation of bulges and
puffs is shown to depend on Re. For the channel flow, the critical Re lies in the range 400 < Re < 500 and
the critical Fr lies in the range 0.045 < Fr < 0.05, with the bulge observed above the critical Re and below
the critical Fr. Further, it has been observed that at Re ≥ 500, the bulge forms for low enough Fr, while
with increasing Fr (by increasing uin) the bulge formation reduces and the flow eventually becomes steady.
For the plume flow, the critical Re lies in the range 300 < Re < 400, with the bulge and puff observed above
the critical Re. The results obtained for the plume and channel flows shown in Figure 6 are approximately
consistent, indicating that the use of the channel flow model to study the lapping flow instability in the
vicinity of the plume source is appropriate. The results above clearly show that the bulge formation along
the lapping flow is dependent on both Re and Fr. It is further considered that one mechanism causing the Re
dependence of the bulge formation is the Re dependence of the thermal boundary layer thickness, as shown
by Equation (12) and the results in Figures 4 and 5. In the present cases where Pr is constant and the Fr
variation is much smaller, compared to the Re variation, the Re variation is the dominant factor determining
δT .

In order to examine the correlation between the location of the bulge formation and Fr, it is considered to
be reasonable to use the location of the peak in the horizontal distribution of the mean buoyancy fluctuation,
〈v′T ′〉, in the thermal boundary layer as a measure of the mean location of the bulge formation. Hence, for
the cases where the bulge was found to form, the horizontal location of the peak in 〈v′T ′〉 at y Re

1
2 Fr

1
2 = 0.2,

measured from the beginning of the heated section, is plotted against Fr in Figure 7. Again, 〈v′T ′〉 has been
averaged in the z direction for both the plume and channel flows, and for the plume flow the 〈v′T ′〉 profiles
on either side of the line of symmetry, x = 0.0, have been averaged to obtain a single peak location for each
case. As can be seen, the location of the peak in 〈v′T ′〉 has a positive correlation with Fr, demonstrating
that the bulge forms further downstream with increasing Fr. From this, it may be assumed that an increase
in Fr reduces the spatial growth rate of the Rayleigh-Taylor instability, hence shifting the location of the
bulge formation further downstream.
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(a) Re = 300 (b) Re = 1000

Figure 2: Temperature fields for the plume flow (t = 98). The red arrows show the directions of the lapping
flow velocity.

(a) Re = 400, Fr = 0.05508 (b) Re = 1000, Fr = 0.04523

Figure 3: Temperature fields for the channel flow (t = 100). The red arrows show the directions of the
lapping flow velocity.

Table 1: Fr calculated for the plume flow with various Re
Re Fr
200 0.04673
300 0.04077
400 0.03982
500 0.03956
600 0.03907
700 0.03796
800 0.03790
900 0.03750
1000 0.03714
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Figure 4: Mean temperature, 〈T 〉, at x = ±0.4 over normalised height for the plume flow with various Re
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Figure 6: Mapping for the formations of the bulges in the lapping flow for both the plume and channel flows,
and the puffs for the plume flow
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4.2 Parametric dependence of oscillation frequencies
For the cases where the bulge was found to form, the non-dimensional oscillation frequencies (St) were
determined by obtaining the temperature, T , as a function of time at particular locations and then per-
forming a discrete Fourier transform on the signal. For the plume flow, T was obtained over 50 non-
dimensional time units after the initial integration to t = 100 at the locations along the lapping flow,
(x, y, z) = (−0.25, 0.05, 0.0), (−0.225, 0.05, 0.0), (−0.2, 0.05, 0.0), (−0.175, 0.05, 0.0) and (−0.15, 0.05, 0.0),
and along the plume axis, (x, y, z) = (0.0, 0.1, 0.0) and (0.0, 0.2, 0.0). For the channel flow, T was obtained
over 50 non-dimensional time units after the initial integration to t = 50 at the location in the lapping flow,
(x, y, z) = (3.25, 0.05, 0.0).

From the plume results, it was found that the dominant frequencies at the different locations in the
lapping flow are in excellent agreement for each Re and that the dominant frequency in the lapping flow,
and its sub- and super-harmonics, are also dominating the oscillations at the locations along the plume axis,
which suggests the existence of a convective-type instability of the near-field plume flow. For example, for
the Re = 1000 case, the dominant oscillation frequency in the lapping flow was found to be St ≈ 0.24, with
its sub-harmonic found at St ≈ 0.12 and its super-harmonics found at St ≈ 0.36, St ≈ 0.48 and St ≈ 0.6,
and these frequencies were shown to be also dominating the oscillations along the plume axis.

From the channel flow results, it was found that at a constant Re, with increasing Fr the dominant
frequency increases. Also with increasing Fr at a constant Re, there were shown to be a transition from a
quasi-periodic to almost periodic mode, and a reduction in the amplitude at the dominant frequency. For
example, for the flow with Re = 900, increasing Fr from 0.04033 to 0.04619 leads to an increase in the
dominant frequency from St ≈ 0.24 to St ≈ 0.3 and a reduction in the amplitude at the dominant frequency
from ≈ 0.23 to ≈ 0.016. This is consistent with the assumption made previously that an increase in Fr
reduces the spatial growth rate of the Rayleigh-Taylor instability.

The dominant frequency in the lapping flow was seen to vary with Re for the plume flow, and for the
channel flow the dominant frequency was seen to vary with both Re and Fr. In Figure 8, the dominant
frequency, Std, normalised by Re

1
2 , is plotted against Fr, shown in Tables 1 and 2, for both the plume

and channel flows. It is shown that for all the plume flows and for the channel flows with Fr . 0.042,
Std / Re

1
2 approximately follows the relationship, Std / Re

1
2 = 0.3044Fr−0.00396, while for the channel flows

with Fr & 0.043, Std / Re
1
2 approximately follows Std / Re

1
2 = 0.4285Fr−0.00970. This transition in the Fr

dependence of the dominant oscillation frequency, with increasing Fr above Fr ≈ 0.043, may be associated
with the transition from a quasi-periodic to periodic mode, although a clear mechanism is not known yet.

5 Conclusions
The near-field instability of the planar pure plume flow with Re = 200− 1000 and Pr = 7.0 was investigated
using three-dimensional direct numerical simulations. The near-field plume flow is characterised by the
puffing behaviour, the formation of vortical structures above the plume source. The puffing appears to be
associated with the lapping flow instability, forming a bulge on either side of the plume axis. The formation
of the bulge and its dependence on the lapping flow velocity were investigated by modelling the boundary
layer flow adjacent to the plume source by a channel flow with a heated floor section, providing an additional
control parameter, uin, that is to vary Fr.

The study obtained approximately consistent results for both the plume and channel flows, indicating
that the use of the channel flow model to study the lapping flow instability in the vicinity of the plume
source is appropriate. The bulge forms above a critical Re and below a critical Fr. For the plume flow,
the critical Re was found in the range 300 < Re < 400. For the channel flow, the critical Re was found in
the range 400 < Re < 500 and the critical Fr in the range 0.045 < Fr < 0.05. The Re dependence of the
bulge formation is considered to be at least partly due to the Re dependence of the thermal boundary layer
thickness. The location of the bulge formation shows a positive correlation with Fr, hence a bulge forms
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Table 2: Fr calculated for the channel flow with various Re and uin

Re uin Fr
200 0.02 0.04446
200 0.05 0.04524
200 0.1 0.06068
300 0.02 0.04319
300 0.05 0.04375
300 0.1 0.05038
300 0.12 0.05396
300 0.15 0.05938
400 0.05 0.04400
400 0.1 0.04703
400 0.15 0.05508
500 0.05 0.04214
500 0.1 0.04484
500 0.15 0.05215
500 0.2 0.06019
600 0.05 0.04082
600 0.1 0.04328
600 0.15 0.04985
600 0.2 0.05816
750 0.05 0.03933
750 0.1 0.04160
750 0.12 0.04384
750 0.15 0.04774
750 0.17 0.05049
750 0.2 0.05553
900 0.05 0.03833
900 0.1 0.04033
900 0.15 0.04619
900 0.2 0.05300
1000 0.05 0.03785
1000 0.1 0.03999
1000 0.15 0.04523
1000 0.17 0.04763
1000 0.2 0.05247
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Figure 8: The dominant Std in the lapping flow, normalised by Re
1
2 , plotted against Fr for both the plume

and channel flows
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further downstream with increasing Fr. It is therefore assumed that an increase in Fr reduces the spatial
growth rate of the Rayleigh-Taylor instability.

The oscillation frequencies on the plume axis were found to be closely related to those in the lapping flow,
which suggests the existence of a convective-type instability of the near-field plume flow. With increasing Fr
for the channel flow at a constant Re, the flow undergoes a transition from a quasi-periodic to almost periodic
mode, with a reduction in the amplitude at the dominant frequency. This also supports the assumption that
an increase in Fr reduces the spatial growth rate of the Rayleigh-Taylor instability. Further, the dominant
frequency in the lapping flow, for both the plume and channel flows, was found to scale with Re

1
2 and Fr.
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