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Abstract: The minimized dispersion and controllable dissipation (MDCD) reconstruction tech-
nique optimizes dispersion and dissipation separately and shows desirable properties of both dis-
persion and dissipation. A low dispersion finite volume scheme based on MDCD reconstruction is
proposed which is capable of handling flow discontinuities and resolving a broad range of length
scales. Although the proposed scheme is formally second order of accuracy, the optimized disper-
sion and dissipation make it very accurate and robust so that the rich flow features and complex
geometry encountered in many practical engineering applications can be handled properly. A
number of test cases are computed to verify the performances of the proposed scheme.
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1 Introduction
The low dispersion and dissipation schemes are required in the simulations of problems related to turbulence
and computational aero-acoustics (CAA). The common feathers of these problems are the flow fields with a
broad range of length scales. The optimized dispersion and dissipation are very important for a scheme to
achieve high resolution so that the flow fields with rich flow features can be simulated with high accuracy
in both amplitude and phase. It is recently recognized that the order of the truncation error of a numerical
scheme only provides information on the asymptotic convergence rate to the exact solution without enough
information on the actual error on a finite computational grid [1]. The formal order of accuracy is sufficient
to indicate the performance of a scheme for longer wavelengths. However, the formal order of accuracy is
not a good indicator for shorter waves relative to the grid size [2, 3].

S.K. Lele [4] presented a compact finite difference scheme with spectral-like resolution using Fourier
analysis to quantify the phase errors of a scheme. Tam and Webb [5] devised the dispersion-relation-
preserving (DRP) scheme to optimize coefficients to satisfactorily resolve short waves with respect to the
computational grid. However, both the compact scheme and the DRP scheme are very difficult to obtain
oscillation free numerical solutions if the flow fields contain shock waves and other discontinuities. Wang
and Chen [6] optimized the candidate stencil of the upwind-biased WENO scheme of Jiang and Shu [7]
in the wavenumber space, following the practice of the DRP scheme to achieve higher resolution for short
waves with about 6 points per wavelength (PPW). Martin et.al [8] added an additional candidate stencils to
obtain a set of symmetric candidates and used bandwidth optimization technique to determine the weights
for the optimal stencil, maintaining a small amount of dissipation at high wavenumbers. In recognizing that
the optimal dispersion should be minimal according to some chosen criteria while the optimal dissipation
is often problem dependent, Sun et al [9] presented the minimized dispersion and controllable dissipation
(MDCD) scheme by minimizing dispersion error and leaving one free parameter for adjusting dissipation.
The optimized dispersion properties were not affected by the dissipation adjustment.

Most optimized schemes were designed in the framework of the finite difference methods. In comparison
with the finite difference, the finite volume method (FVM) has several distinct advantages. The first one
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is that the FVM is naturally conservative without spurious source/sink due to numerical treatment. The
second one is that the FVM is particularly suitable for problems with shocks and other flow discontinuities.
Furthermore, the FVM can offer an easier framework to handle the irregular geometry and moving bound-
aries. Therefore, it is important to study the FVM with optimized dissipation and dispersion properties.
In the present paper, the MDCD technique is extended to the FVM. A distinct feature of the FVM is
the solution procedure deals with the cell-averages rather than the point values of the dependent variables.
Taking this fact into consideration, the MDCD reconstruction is proposed. This paper emphasize on the
resolution rather than the formal accuracy of the FVM. Although the proposed scheme is formally second
order of accurate, the optimized dispersion and dissipation make it very accurate and robust so that the rich
flow features and complex geometry encountered in many practical engineering applications can be handled
properly. Furthermore, the present MDCD reconstruction is similar in form to the MUCSL interpolation
that is widely used in the FVM. This feature makes it readily to extend the MDCD reconstruction into
multi-dimensional cases and multi-block grid arrangement. A number of test cases are computed to verify
the performances of the proposed scheme.

2 Spatial discretization
We use the following scalar, one-dimensional linear advection equation to illustrate the development of the
numerical procedures.

∂u

∂t
+

∂f

∂x
= 0 (1)

where f = au. The integration form of Eq. (1) in the control volume Ij = [xj−1/2, xj+1/2] on uniform grids
with spacing (xj−1/2, xj+1/2) = h can be written as∫ xj+1/2

xj−1/2

(
∂u

∂t
+ a

∂u

∂x
)dx =

∂ūj

∂t
h + (f̂j+1/2 − f̂j−1/2) = 0 (2)

where

ūj =
1
h

∫ xj+1/2

xj−1/2

u(x)dx (3)

is the cell average of the dependent variable. The numerical flux function f̂j+1/2 = aûj+1/2 For simplicity,
we only considered the a > 0 case in which ûj+1/2 = ûL

j+1/2 , and ûL
j+1/2 is computed by the reconstruction

polynomial of cell Ij . The superscript "L" in ûL
j+1/2 will be omitted hereafter for brevity. The ûj+1/2 can

be computed using a linear reconstruction denoted by

ûlinear
j+1/2 =

q∑
γ=−(q−1)

aγ ūj+γ (4)

where aγ is the interpolation coefficient. It is apparent that the reconstruction is carried out on a stencil
with is symmetric about the interface (j + 1/2) . There are 2q interpolation coefficients in Eq.(4) which
are capable to reconstruct an unique (2q − 1)th-degree polynomial to achieve 2qth order of accuracy for the
interfacial state of the dependent variable. We consider the case q = 3 , for which the interfacial state of the
dependent variable in Eq.(4) can be computed by

ûlinear
j+1/2 = (α−2ūj−2 + α−1ūj−1 + α0ūj + α1ūj+1 + α2ūj+2 + α3ūj+3) (5)

The interfacial state ûj+1/2 obtained from Eq. (5) is used to compute the numerical flux function:

f̂j+1/2 = a (α−2ūj−2 + α−1ūj−1 + α0ūj + α1ūj+1 + α2ūj+2 + α3ūj+3) (6)
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Figure 1: Symmetric stencil for q = 3 with 6 candidates.

According to the Lemma 1 of Ref.[9], in order to optimize the dispersion and dissipation separately, the
reconstruction should be 4th order although the highest possible order of accuracy is 6 for the case q = 3 .
Taylor series expansion of ūβ to nth-order of accuracy about interface (j + 1/2) yields

ūβ =
1
h

∫ xβ+1/2

xβ−1/2

u(x)dx =
1
h

n∑
m=1

(
∂m−1u

∂xm−1

)
β+1/2

(
x− xj+1/2

)m

m!

∣∣∣∣∣
xj+1/2

xj−1/2

 (7)

After substituting uβ(β = j − 2, ..., j + 3) into Eq.(6), it is straightforward to show that the following
conditions ensure the 4th order of accuracy of the reconstruction.

α−1 =
−1
12

+
−3
2

(α−2 + α3) +
−5
2

(α−2 − α3) (8)

α0 =
7
12

+ (α−2 + α3) + 5 (α−2 − α3) (9)

α1 =
7
12

+ (α−2 + α3)− 5 (α−2 − α3) (10)

α2 =
−1
12

+
−3
2

(α−2 + α3) +
5
2

(α−2 − α3) (11)

Therefore, two more conditions are needed in order to uniquely determine the coefficients α−2 and α3 ,
which will be provided by the MDCD optimization technique that will be presented in Section 3. After the
optimization, the reconstruction will be called the (linear) MDCD reconstruction.

The linear reconstruction in Eq.(5) cannot be used directly to compute the flow fields with shock waves.
In order to capture the shock waves, the nonlinear adaptation mechanism of the WENO scheme can be easily
introduced. For the case q = 3 , the interfacial state is computed by [8]

ûnonlinear
j+1/2 =

3∑
k=0

ωkuk
j+1/2 (12)

where uk
j+1/2 is obtained by a 2nd-degree polynomial reconstructed on stencil Sk which, for k = 0, 1, 2, 3 , is

shown in Figure 1. The detailed formulation of uk
j+1/2 is given by

u0
j+1/2 =

2
6
ūj−2 +

−7
6

ūj−1 +
11
6

ūj (13)
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u1
j+1/2 =

−1
6

ūj−1 +
5
6
ūj +

2
6
ūj+1 (14)

u2
j+1/2 =

2
6
ūj +

5
6
ūj+1 +

−1
6

ūj+2 (15)

u3
j+1/2 =

11
6

ūj+1 +
−7
6

ūj+2 +
2
6
ūj+3 (16)

In Eq.(12), ωk is the nonlinear weight associated with stencil Sk shown in Figure 1. According to Jiang and
Shu [7], ωk is computed by

ωk =
Ck

(ε+ISk)p∑3
k=0

Ck

(ε+ISk)p

(17)

where Ck is the linear weight of the candidate stencil Sk , the constant ε is a small positive number to
prevent division by zero, and p is chosen to be p = 1 to reduce the dissipation. It is evident that ωk satisfies
the condition:

3∑
k=0

ωk = 1 (18)

ISk in Eq.(17) is the smoothness measurement which becomes larger when discontinuities are present within
stencil Sk and remains relatively small otherwise. The definition of ISk is presented by Jiang and Shu [7].
The smoothness IS3 of purely downwind candidate S3 is considered to satisfy

IS3 = max
0≤k≤3

(ISk) (19)

to prevent instability [8]. In the present paper, the weight functions of the WENO scheme will also be
optimized by the MDCD technique. This procedure of optimization is different from that of [8] in the
fact that the present procedure optimizes the dissipation and dispersion separately for a flexible control of
the dissipation without affecting the optimized dispersion. However, it is difficult to optimize a non-linear
scheme directly. Therefore, the linear counterpart of Eq.(12) obtained by setting ωk = Ck will be used in
the optimization procedure. The linearized scheme is identical to Eq.(5) if the coefficient Ck is given by

C0 =
3
2
(α−2 + α3) +

3
2
(α−2 − α3) (20)

C1 =
1
2

[1− 3(α−2 + α3) + 9(α−2 − α3)] (21)

C2 =
1
2

[1− 3(α−2 + α3)− 9(α−2 − α3)] (22)

C3 =
3
2
(α−2 + α3)−

3
2
(α−2 − α3) (23)

Therefore, the optimized WENO reconstruction can be deduced directly by the linear MDCD reconstruc-
tion. After the optimized values of α−2 and α3 are obtained by the MDCD technique, Ck(k = 0, 1, 2, 3)
in Eq.(17) are computed by Eq.(20)∼(23). The resulting reconstruction is called the MDCD-WENO re-
construction which is 4th order accurate when the solution is smooth, and is capable of capturing flow
discontinuities.

It has been observed that the nonlinear adaptation of the MDCD-WENO reconstruction may deterio-
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rate the spectral properties of the schemes even in the smooth region [9]. To overcome these limitations, a
hybrid scheme is presented by combining the linear part and the nonlinear part of reconstruction following
the method of Ren et al.[10]. The advantage of the hybrid scheme is to retain the dissipation and disper-
sion properties of the linear reconstruction in most part of the solution domain whenever the solution is
smooth and is capable of shock capturing. Furthermore, the hybrid reconstruction is more efficient than
WENO reconstruction since the expensive non-oscillatory shock-capturing scheme is only used in the regions
containing the discontinuities. The reconstruction of ûhybrid

j+1/2 is carried out by

ûhybrid
j+1/2 = σj+1/2û

linear
j+1/2 + (1− σj+1/2)ûnonlinear

j+1/2 (24)

The factor σj+1/2 weights the linear optimal reconstruction in the smooth region over the shock capturing
nonlinear reconstruction in the region containing discontinuities. The hybrid reconstruction can revert to the
linear reconstruction when σj+1/2 = 1 while to the nonlinear reconstruction when σj+1/2 = 0. The weight
is determined by a continuous function of the smooth indicator [10]

σj+1/2 = min
(

1,
rj+1/2

rc

)
(25)

where rc is a threshold value chosen as 0.4 in the present paper. The smooth indicator rj+1/2 is computed
by

rj+1/2 = min (rj , rj+1) (26)

where

rj =
|2∆uj+1/2∆uj−1/2|+ ε

(∆uj+1/2)2 + (∆uj−1/2)2 + ε
(27)

and ∆uj+1/2 = ūj+1 − ūj . The positive real number ε is defined by

ε =
0.9rc

1− 0.9rc
ξ2 (28)

where the value of ξ is set to be 10−3. The reconstruction given by Eq.(24) is called the MDCD-HY
reconstruction hereafter.

3 Spectral properties optimization
In this process, the MDCD approach [9] will be used to achieve a separate optimization of the dissipation
and dispersion properties of the finite volume scheme proposed in Section 2. Fourier analysis is used to
optimize the spectral properties of the scheme, which will provided two more conditions that are needed in
order to uniquely determine the coefficients α−2 and α3 in Eq.(8)∼(11).

3.1 Spectral properties
The Fourier analysis provides an effective way to quantify the resolution characteristics of the differencing
approximation [4]. So it is used for spectral properties improvement. Consider a pure harmonic function

u = A(t)eikx (29)

where x is position, k is wavenumber and i =
√
−1. The exact integration form of Eq.(1) in the control

volume
[
xj−1/2, xj+1/2

]
is

∂ūj

∂t
h + a

(
Aeikxj+1/2 −Aeikxj−1/2

)
= 0 (30)
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while the approximate integration form of Eq.(1) in the the control volume
[
xj−1/2, xj+1/2

]
is

∂ūj

∂t
h +

(
f̂j+1/2 − f̂j−1/2

)
(31)

where the average value in control volume is evaluated as

ūj =
1
h

∫ xj+1/2

xj−1/2

Aeikxdx =
A

ikh

(
eikxj+1/2 − eikxj−1/2

)
(32)

When all ūβ (β = j − 2, · · · , j + 3) in Eq.(32) are substituted into Eq.(6), the numerical flux is obtained as

f̂j+1/2 =
aA

ikh

3∑
p=−2

αpe
−p(ikh)

(
eikxj+1/2 − eikxj−1/2

)
(33)

Substituting Eq.(33) into Eq.(31) yields

∂ūj

∂t
h + aA

(
eikxj+1/2 − eikxj−1/2

) (
κ′

κ

)
= 0 (34)

where κ′ = k′h and κ = kh are scaled wavenumbers. κ′ is given by

κ′ = −i

[
−α−2e

−3iκ + (α−2 − α−1) e−2iκ + (α−1 − α0) e−iκ+
(α0 − α1) + (α1 − α2) eiκ + (α2 − α3) e2iκ + α3e

3iκ

]
(35)

and κ′ is defined as the modified wavenumber. The real part of κ′, <(κ′), is associated with phase errors
while the imaginary part =(κ′) is associated with the amplitude errors. <(κ′)and =(κ′) can be written the
following forms when Eq. (8)∼(11) is used in Eq.(35):

<(κ′) = γdisp sin 3κ−
(

4γdisp +
1
6

)
sin 2κ +

(
5γdisp +

4
3

)
sinκ (36)

=(κ′) = (cos 3κ− 6 cos 2κ + 15 cos κ− 10) γdiss (37)

where
γdisp = α−2 + α3; γdiss = α−2 − α3

γdisp in the real part <(κ′) is associated with dispersion while γdiss in the imaginary part =(κ′) is associated
with dissipation. Therefore, the dispersion and dissipation can be optimized separately since (α−2 +α3) and
(α−2 + α3) are independent parameters.

3.2 Optimization of spectral properties
The dispersion is optimized by the minimization of the following objective function [9].

E =
1

eνπ

∫ π

0

eν(π−κ) (<(κ′)− κ)2 dκ (38)

where the factor ν in the exponential term is used to control the error at small wavenumber. The optimized
value γdisp due to different ν shown in Table 1. In this paper γdisp is chosen as

γdisp = 0.0463783 (39)

It is interesting to note that the results are identical to the results of [9] where the finite difference
approach is used. However, the present results should be interpreted differently with that of [9] since the
present coefficients are used to the cell-averaged values rather than the point values.
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Table 1: optimal γdisp due to different ν

ν 4 6 8 10
γdisp 0.0714071 0.0545455 0.0463783 0.0420477

The amount of dissipation is determined by γdiss. To ensure the stability of the scheme the dissipation
should be non-negative for all wavenumbers. Therefore, the imaginary part of the modified wavenumber
=(κ′) should be non-negative which results in

γdiss ≥ 0 (40)

There is no systematic way to optimize the dissipation property of a scheme because of optimal dissipation
may be problem dependent. A significant advantage of the MDCD reconstruction is that it provides the
flexibility in adjusting the dissipation without corrupting its dispersion properties. In practice, we should
choose dissipation as small as possible but large enough to ensure the stability of the simulation. This, in
the present MDCD reconstruction, can be achieved by choosing a proper value of γdiss.

The coefficients αγ(γ = −2,−1, 0, 1, 2, 3) can be uniquely determined when γdisp and γdiss are specified,
which are given by

α−2 =
1
2

(γdisp + γdisp) ; α−1 =
−1
12

− 3
2
γdisp −

5
2
γdiss

α0 =
7
12

+ γdisp + 5γdiss; α1 =
7
12

+ γdisp − 5γdiss

α2 =
−1
12

− 3
2
γdisp +

5
2
γdiss; α3 =

1
2

(γdisp − γdisp)

(41)

The coefficients Ck(k = 0, 1, 2, 3) in Eq.(17) are then computed by Eq.(20)∼(23).
The MDCD reconstructions, including the MDCD-WENO and MDCD-HY reconstructions can be easily

extended into solving Euler and Navier-Stokes equations. In the present paper, the MDCD-WENO and
MDCD-HY reconstructions have been applied in our in-house code RAIN3D, which is a 3D multi-block code
solving steady and unsteady Navier-Stokes (including RANS) equations.

4 Numerical tests
In this section, a number of numerical tests are used to analyze the behavior of the MDCD-WENO and
MDCD-HY reconstructions presented in Section 2 and Section 3. The numerical tests include the one
dimensional problem of shock/entropy wave interaction, the tow-dimensional problem of right moving Mach
10 shock and three-dimensional problems of flows over an SD7003 airfoil and the DLR-F4 Wing-Body generic
aircraft model.

4.1 Shu-Osher problem
The Shu-Osher problem represents a Mach 3 shock interacts with a density disturbance which was first
proposed by Shu and Osher [11]. Its governing equations are the one-dimensional Euler equations and the
initial non-dimensional flow conditions are

(ρ, u, p) =
{

(3.857143, 2.629369, 10333); if(x < 1)
(1 + 0.2 sin(5x), 0, 1); otherwise

(42)

The interaction between the shock and the density disturbance generates a flow field with both smooth
structure and discontinuities. This is a good test case to evaluate the spectral properties as well as the shock-
capturing capability of a scheme. The solution is advanced time up to t = 1.8 on the computational domain
x ∈ [0, 10]. The CFL number is 0.2, which is low enough to ensure spatial discretization errors are dominant
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Figure 2: Shu-Osher problems. Distribution of density at t = 1.8 for MDCD-WENO,MDCD-HY and
WENO-JS(left) and Distribution of density at t = 1.8 for MDCD-HY with different dissipations(right).

over time advancement errors. The grid number is N = 200. Density distributions are shown in Figure 2.
For the case with γdiss = 0.01, the results of the MDCD-WENO and the MDCD-HY reconstructions are
labeled as MDCD-WENO(0.01) and MDCD-HY(0.01) respectively, and are shown in Figure 2. The "exact"
solution is obtained by WENO-JS scheme [7] with the cell number N = 2000 although there is no real
exact solution for the problem. As shown in Figure 2, the WENO-JS yields heavily damped solutions and
both MDCD-HY and MDCD-WENO demonstrate superior resolution than WENO-JS in reproducing the
correct flow structures downstream of the shock due to their better resolution. However, MDCD-WENO is
more dissipative than MDCD-HY due to the over adaption of nonlinear weights in the smooth region. The
comparison of MDCD-HY reconstruction with controllable dissipation coefficients γdiss = 0 and γdiss = 0.046
is shown in Figure 2. Even a small amount of dissipation will influence the results as shown in Figure 2.
Therefore, the dissipation should be reduced as much as possible if it will not create spurious numerical
oscillations. The flexibility of MDCD-HY reconstruction in adjusting the numerical dissipation is a great
advantage for problems with both small scale structures and discontinuities.

4.2 Double Mach Reflection
This test case is a two dimensional test for high resolution schemes. The computational domain is defined
as (x, y) ∈ [0, 4] × [0, 1] and a wall lies on the bottom of the computational domain starting from x = 1/6.
The problem is about a right moving Mach 10 shock set up to makes an angle of with the x − axis at
x = 1/6, y = 0 and the initial non-dimensional flow conditions are

(ρ, u, v, p) =
{

(1.4, 0, 0, 1.0); if(x > x0 + y
√

3/3)
(8.0, 7.1447,−4.125, 116.5); otherwise

(43)

where x0 = 1/6. 800 × 200 cells are used in the computational domain and the solution is advanced time
up to t = 0.2. The numerical results for MUSCL and characteristic-wise WENO-JS, MDCD-WENO(0.01),
MDCD-HY(0.01) reconstructions are shown in Figure 3 and Figure 4.

The detailed discussion of the flow physics can be found in [12]. At the given output time two Mach
stems form with two contact discontinuities. The second contact discontinuity, near the bottom of the wall,
is extremely weak. The second Mach shock is rather weak and dies out entirely when it reaches the contact
discontinuity from the first Mach reflection. This variation of the strength of the second Mach shock is very
difficult to compute accurately. At the point where the first contact discontinuity approaches the reflecting
wall the flow of the denser fluid is deflected by a pressure gradient built up in the region. Then a jet of the
denser fluid is formed which shoots to the right along the wall [12].

As shown in Figure 3 and Figure 4, the main difference in the resolution of the contact discontinues
and the associated jet is due to the dispersion and dissipation of the different reconstructions. Actually, the
contact discontinuities are physically unstable structures of the flow. The converged numerical solution of the
problem can be obtained when using the full viscous and heat conductive Navier-Stokes equations [13]. As
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Figure 3: Density contours for double Mach reflection problem.

Figure 4: The enlarged portion of Figure 3.

for the Euler equations, the numerical dissipation is responsible for the viscosity and depends on the order of
truncation error and spectral properties. Furthermore, no converged solution is obtained when mesh refined.
Therefore the numerical schemes effect is the Kelvin-Helmholtz instability of the contact discontinuity and
the instability is more pronounced, when the scheme is less dissipative. Therefore, The MDCD-WENO(0.01)
and MDCD-HY(0.01) reconstructions with good spectral properties achievs higher resolution than the other
two schemes and can capture the rollup structures of Kelvin-Helmholtz instability of the contact discontinuity
more clearly.

4.3 Implicit Large Eddy Simulation of transitional flow over an SD7003 airfoil
The transitional flow over an SD7003 airfoil at low Reynolds number of 6 × 104 and the angle of attack
of 4◦ degrees is characterized by the laminar separation bubbles (LSB), vortex breakdown, transition to
turbulence and reattachment. Implicit Large Eddy Simulations using finite volume method with MDCD-
HY(0.01) reconstruction is used to capture of the separation, transition process and reattachment process.
The results show good agreement with experimental data and computations of high order schemes for
separation, reattachment, and transition locations, as well as aerodynamic loads. The total grid number
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Figure 5: Mean pressure coefficient Cp (left) and mean skin friction coefficient Cf (right) on the wing surface
with comparison to the computations by previously published results. Solid line: 2nd-order FVM with
MDCD-HY reconstruction; square symbols: Zhou et al [14]; diamond symbols: Galbraith et al [15].

Figure 6: Instantaneous iso-surfaces of Q-criterion.

used present is 1,701,900. The test is computed at Mach number of 0.2.
The mean pressure coefficient and mean skin friction coefficient are compared to the results from Zhou

et al [14] and Galbraith et al [15] in Figure 5. The results from Zhou et al [14] are computed by 3rd-order
spectral difference method with 2,119,500 degree-of-freedom and the results from Galbraith et al [15] are
computed at Mach number of 0.1 by 6th-order on overset grid of approximately 5,700,000 grid points. Zhou
et al [14] has verified that the Mach number of 0.2 is low enough for computations.

Although visible differences between different methods can be observed in Figure 5, the quantitative
results presented in Table 2 show that the present results agree with the experimental results quite well. Table
2 compares locations of separation, transition, and reattachment from TU-SB and HFWT experimental data
and computations with XFOIL [16], Zhou et al [14], Galbraith et al1 [15] on overset mesh of of approximately
5,700,000 grid points and Galbraith et al2 [15] on baseline mesh of 315×151×101 grid points and the present
ILES computation with a 2nd-order finite volume method using MDCD-HY reconstruction. The computed
separation location of the present ILES falls in between both experimental measurements. The present ILES
computed transition location of 47% chord is in well agreement of the measured HFWT transition location
and the Galbraith et al [15] transition location computed on baseline mesh. Reattachment locations are
consistent between present ILES and TU-SB both at 62%. Instantaneous iso-surfaces of the Q-criterion
are shown in Figure 6. A laminar separation bubble forms after the flow detaches from the suction side of
the airfoil. As the vortex breakdown, a coherent spanwise vortex over the extent of the airfoil forms and
subsequently breaks down into turbulent structure and reattaches to the wall.
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Table 2: Separation, transition and reattachment locations

Case FSTI [%] Separation Transition Reattachment
Zhou et al 0 0.223 0.515 0.675

Galbraith et al1(overset mesh) 0 0.23 0.55 0.65
Galbraith et al2(baseline mesh) 0 0.24 0.45 0.61

Present 0 0.236 0.47 0.62
TU − SB.exp 0.08 0.30 0.53 0.62
HFWT.exp ∼0.1 0.18 0.47 0.58

XFOIL 0.07(N=9) 0.21 0.57 0.59

Figure 7: The DLR-F4 model (left) and Grid of the half model (right).

4.4 The DLR-F4 Wing-Body flows
The DLR-F4 Wing-Body generic aircraft model, depicted in Figure 7, has been selected as test case for
the 1st AIAA Drag Prediction Workshop. The test cases are conducted to show the application of MDCD-
WENO reconstruction to the complex aircraft configurations. The test conditions and reference quantities
are listed in Table 3 and the test cases are listed in Table 4. There are 2,259,360 cells of the half model.

The MDCD-WENO reconstruction and the central scheme are used to compute the inviscid flux and the
viscous flux respectively. The one-equation SA turbulence model by Spalart is selected as the turbulence
model. In case 1, the integrated lift, drag and pitching moment perditions are compared to experimental
data from Europe-an wind tunnels (NLR-HST, ONERA-S2MA, DRA-8ftąÁ8ft DRA Bedford [17]) and the
simulation by Christopher Rumsey and Robert Biedron using CFL3D code [18] in Figure 8.

The simulations of MDCD-WENO reconstruction is on the 1-to1 grid of 2,259,360 cells while CFL3D
are on the 1-to-1 grid of about 3.2 million cells. It is obvious that MDCD-WENO reconstruction is similar
to CFL3D using "official" version S-A turbulence model in predicting the pitching moment while they are
all similar in drag perdition. In case 2, pressure coefficient contour of the DLR-F4 wing/body configuration

Table 3: Test conditions and reference quantities

Testconditions Re = 3.0× 106,Ma = 0.75
Wing ref. area Sref = 0.1454m2

Aerodynamic mean chord Cref = 0.1412m
Aspect ratio AR=9.5

Moment ref. center x = 0.5049, y = −0.03392, z = 0.
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Table 4: Test cases of DLR-F4 Wing-Body flows

Test cases Test conditions
Case 1 α = {−3◦,−3◦,−2◦,−1◦, 0◦, 1◦, 2◦, 3◦} SA turbulence model
Case 2 α = −0.26◦, CL = 0.5 SA turbulence model

Figure 8: Integration of lift, drag (left) and pitching moment (right) coefficients.

Figure 9: Pressure coefficient contour of the DLR-F4 Wing-body (CL=0.5).

Figure 10: Chordwise pressure distributions at eta = 0.331 (left) and eta = 0.512 (right).
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Figure 11: Streamlines and corner vortex.

Table 5: Grids and turbulence model of the flow solvers

Flow Solver Structured grid Unstructured grid Turbulence model
Rain3D(Present) 2,259,360 – S-A

CFL3Dv6 3.4× 106 – k-w SST
OVERFLOW 3,727,462(overset) – S-A

DLR-TAU – 2.36× 106((1× adapted)) S-A;k-w
NSU3D – 1.6× 106 S-A

when CL=0.5 are shown in Figure 9.
The comparisons of chordwise pressure distribution at eta = 0.331 and eta = 0.512 are shown in Figure 10

in case 2. In Figure 10, the simulations of MDCD-WENO reconstruction using RAIN3D code are compared
to the experimental data and other simulations which are computed by Robert Narducci [19] using CFL3Dv6
code, S. Melissa Rivers et al [20] using OVERFLOW code, Dieter Schwamborn and Mark Sutcliffe [21] using
DLR TAU Code and David W. Levy [22] using NSU3D code. The details of compared simulations are listed
in Table 5. Streamlines on the wing and the corner vortex (CL=0.5) are shown in Figure 11.

The DLR-F4 Wing/Body test case shows that the MDCD-WENO reconstruction can simulate the prac-
tical transonic flow over the complex configuration with shock boundary interaction and MDCD-WENO
reconstruction shows comparable or better resolution than other codes with more grids.

5 Conclusion and Future Work
In this paper, the MDCD scheme with minimal dispersion and controllable dissipation is extended to the
finite volume framework. Although the proposed scheme is formally second order of accuracy, the optimized
dispersion and dissipation make it very accurate and robust so that the rich flow features and complex
geometry encountered in many practical engineering applications can be handled properly. Several bench-
mark tests show excellent resolution of the MDCD-WENO and MDCD-HY reconstructions. Notable results
include that the MDCD-HY reconstruction is successfully applied to the transitional flow simulation over
an SD7003 airfoil characterized by the laminar separation bubbles (LSB), vortex breakdown, transition to
turbulence and reattachment; and the MDCD-WENO reconstruction is applied to the practical transonic
flow over the DLR-F4 Wing-Body configuration with shock boundary layer inter-action, and shows better
resolution than other codes.
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