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Abstract: Despite the critical importance of resolving flow at or near domain boundaries, often
boundary condition formulations are implemented in an ad-hoc fashion. The purpose of this work
is to provide a general framework for the implementation and, importantly, the verification of
boundary conditions for node- and cell-centered finite volume schemes. These conditions may
include any combination of Dirichlet conditions, Neumann conditions, extrapolation, and in some
instances, the conservation equations themselves. Specific conditions for inviscid walls, inflow, and
outflow are systematically tested using manufactured and exact solutions. The procedures in this
work provide a method for the verification of complex boundary conditions as well as shed valuable
physical insight for different problem situations.
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1 Introduction
Computational fluid dynamics (CFD) is used to simulate flows for a variety of applications. Often, these
applications require high levels of accuracy at or near domain boundaries. Examples of such applications
include calculations of aerodynamic lift and drag, computation of boundary layer profiles, estimation of
heating at surface locations, and mass flux computation. For these and other cases, the region near the
boundary is the primary focus of the CFD simulation. Although the computational domain may extend
greatly from these boundaries, the areas near them often require the greatest resolution and numerical
accuracy.

Despite the need for high accuracy near boundaries (or perhaps because of it), numerous boundary
procedures have been proposed in the literature. For example, a widely used inviscid wall treatment by
Rizzi [1] involves the use of the momentum equation to obtain the pressure. Jameson directly modified
the flux at an inviscid wall to involve no convective contribution [2]. Alternately, Dadone and Grossman
advocate a curvature corrected symmetry condition for an inviscid wall [3]. Balakrishnan and Fernandez
advocate a variety of other methods for an inviscid wall involving additional quantities such as entropy and
enthalpy [4]. Numerous other strategies exist for inviscid walls as well as other boundary conditions, such
as inflow, outflow, and no-slip walls. The difficulty is that many of these methods have not been rigorously
verified and may or may not be consistent with the interior discretization schemes. Recently, Choudhary et.
al. [5] successfully verified boundary conditions using the method of manufactured solutions (MMS). Their
approach requires carefully constructed manufactured solutions that already satisfy the boundary conditions,
which means that a new manufactured solution needs to be constructed for each boundary condition and
geometry.

This work addresses many of these difficulties by focusing on three main goals. First, we provide a
general framework for implementation of boundary conditions for both node- and cell-centered schemes. The
framework applies to arbitrary boundary conditions for any physical system. Second, we provide a rigorous
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boundary nodes (node−centered)

(a) Boundary degrees of freedom for node-centered methods.

ghost nodes (cell−centered)

(b) Boundary ghost nodes for cell-centered methods.

Figure 1: Location of boundary condition enforcement for node- and cell-centered schemes.

and general approach for the verification of these boundary conditions based on MMS. While verification is
an essential step in CFD development and practice, many verification strategies have neglected boundary
effects [6, 7, 8, 9, 10]. In this work we extend the traditional use of MMS to include boundary conditions
and uncover certain key aspects of using MMS in this way. While the verification procedure determines the
numerical accuracy of the discretization, it does not indicate that the proper equations have been selected for
a given problem. Therefore, the third objective of this work is to demonstrate the requirement of choosing
physically correct boundary conditions for a given problem. Unlike the interior, at boundaries, the choice of
governing equations is not well established. The studies in this work indicate that the choice of boundary
conditions is not unique, but careful analysis is necessary to verify the properties of these formulations.

In order to accomplish these tasks, we explore the formulation of a variety of common boundary types,
including inviscid walls, inflow, and outflow, for both node- and cell-centered finite volume schemes. For each
of these boundary types, we explore a variety of conditions spanning Dirichlet, Neumann, and extrapolation.
Importantly, we highlight the fact that node-centered schemes allow for direct use of the governing equations
of motion (mass, momentum, and energy) themselves at the boundaries. Cell-centered schemes do not easily
allow use of the equations of motion, but usually rely on extrapolation or other conditions. Great care
must be taken with cell-centered schemes to avoid the selection of additional conditions, which may conflict
with the interior equations of motion. Other boundary condition types and implementations beyond those
discussed in this work are certainly possible. Here, the principal objective is to provide a framework for the
implementation and verification of any boundary condition.

The paper is organized as follows: First, boundary condition formulations are explored for node- and
cell-centered finite volume schemes. We present a common discretization framework with which we test a
variety of governing boundary equations. We show how to verify these boundary conditions using MMS.
We then present a number of grid refinement studies. First a quasi-1D nozzle is tested with both MMS and
exact solutions. Next, we extend the use of MMS to two dimensions and wall boundary conditions. Finally
we present error convergence results using Ringleb flow and a NACA 0012 subsonic airfoil. We then offer
some conclusions derived from these studies.

2 Boundary Condition Implementation
In this work we test a variety of boundary condition implementations and assess the resulting impact on
accuracy through rigorous verification studies. In the interior of the domain, we solve the steady Euler
equations,

∂Q

∂τ
+ ∇ · F = 0, (1)

where Q = (ρ, ρu, ρv, ρe)T is the vector of conserved variables, and F is the inviscid flux vector. Here, ρ is
density, u and v are the Cartesian velocity components, and e is the total energy per unit mass. We are
interested in solving the steady equations to which we add the pseudo-time (τ) derivative for convenience in
marching to steady state. We test both node- and cell-centered finite volume spatial discretizations, which
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result in a semi-discrete set of non-linear equations of the form

∂Q

∂τ
+R(Q) = 0, (2)

where R(Q) is the steady residual at either an interior node or an interior cell location depending on the
discretization procedure.

In addition to the interior discretization scheme, we must also incorporate boundary conditions to close the
system of equations on a finite domain. Here we focus on inviscid wall, inflow, and outflow conditions in order
to explore fundamental issues of physical and numerical accuracy. The methodology developed here is quite
general and directly applies to other boundary condition types as well. For node-centered discretizations,
boundary conditions are enforced directly at the boundary nodes coincident with the physical boundary,
shown in Figure 1(a). For cell-centered discretizations, we introduce additional unknowns in the form of
ghost nodes located at the flux quadrature points of the boundary faces, shown in Figure 1(b). The ghost
nodes are then used in an upwind flux formula to determine the numerical flux through the boundary face. In
this manner, the cell-centered boundary formulation remains water-tight. The node-centered configuration,
however, is not strictly water-tight since the fluxes surrounding the boundary nodes do not always cancel
with nearby interior nodes.

For both node- and cell-centered formulations, we define a “boundary residual,” Rb(Q), which we drive
to zero at steady state along with the interior residuals, R(Q):

Rb(Q) = 0. (3)

At boundaries in a node-centered discretization, Rb replaces R at the boundary nodes. In cell-centered
discretizations, Rb provides the governing equations for the ghost nodes. In all, we test fifteen different
boundary implementations, which are listed with a common notational convention in Table 1 for clarity. The
methods all involve Dirichlet-specified quantities, with the state specification completed by other methods,
such as Neumann conditions, extrapolation, or combinations of the equations of motion. We will refer to
this table as we develop various forms for Rb in the following sections.

Table 1: Notation for boundary condition methods tested.
Short Name Boundary Type Dirichlet Other conditions

n-INV1 Node-centered Inviscid wall un Lagrange multipliers
n-INV2 Node-centered Inviscid wall un ut Neumann, mass and energy eqs.
n-INV3 Node-centered Inviscid wall un ρ, ut, ρe Neumann
n-INV4 Node-centered Inviscid wall – zero convective flux
n-INF1 Node-centered Inflow s, h, ut Lagrange multipliers
n-INF2 Node-centered Inflow s, h, ut outgoing characteristic eq.
n-OUT1 Node-centered Outflow p Lagrange multipliers
n-OUT2 Node-centered Outflow p outgoing characteristic eqs.
c-INV1 Cell-centered Inviscid wall un ρ, ut, ρe extrapolated
c-INV2 Cell-centered Inviscid wall – Pressure extrapolated
c-INV3 Cell-centered Inviscid wall un ρ, ut, ρe Neumann
c-INF1 Cell-centered Inflow s, h, ut un extrapolated
c-INF2 Cell-centered Inflow R−, ut, s R+ extrapolated
c-OUT1 Cell-centered Outflow p ρ, u, v extrapolated
c-OUT2 Cell-centered Outflow R− R+, ut, s extrapolated

2.1 Node-Centered Boundaries
All boundary conditions involve the specification of a certain number of Dirichlet (or Neumann) conditions
augmented by additional information derived from the interior field. With node-centered schemes it is
straightforward to select a combination of the governing equations of motion (mass, momentum, and energy)
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to enforce at boundary nodes. This is because the boundary nodes lie within control volumes for which we
can easily implement flux balances. This will be shown in the methods described below. In contrast, cell-
centered boundary conditions often require the use of ghost nodes for which there is no natural control
volume or flux balance. Thus, it becomes difficult to apply the equations of motion directly at the ghost
nodes. Instead, we choose some other method to define the ghost node state, such as extrapolation.

Enforcement of boundary conditions within a node-centered scheme involves the specification of the
boundary residual, Rb, directly at the boundary nodes shown in Figure 1(a). In this section, we outline two
procedures to obtain the boundary residual. The first involves the use of Lagrange multipliers as discussed
in detail by Allmaras [11]. The second involves the multiplication of the governing equations of mass,
momentum, and energy by a selection matrix to complete the boundary conditions. In addition, we discuss
a third method involving a commonly used weak boundary condition for an inviscid wall.

2.1.1 Lagrange Multipliers

A method of boundary condition enforcement that has enjoyed widespread use in the finite element commu-
nity for several decades is the Lagrange multiplier method introduced by Babuska [12]. The extension of this
method to the Navier-Stokes equations was discussed in detail by Allmaras [11], but seems to have received
little attention in the finite volume community. The reader is reffered to the above sources for details. It
suffices to state here that the method involves a modification of the variational statement to include extra
conditions along Dirichlet boundaries, leading to an extended system of the form{

B(Q)− b
∂Q
∂τ +R(Q) +

(
∂B
∂Q̃

)T
λ

}
= 0. (4)

Here, B(Q)− b represents a vector of m additional Dirichlet conditions that must be satisfied at boundary
nodes. For example, at a fixed inviscid wall, m = 1, B(Q) = u · n, and b = 0. The additional m conditions
are incorporated via a vector of m Lagrange multipliers, λ. The choice of variables for Q̃ in Equation 4
produces different conditions. While Allmaras chooses entropy variables, Q̃ = ρ

p (pρ
γ+1−s
γ−1 − e, u, v,−1)T ,

other variables, such as the primitive variables, Q̃ = (P, u, v, T )T , are possible, leading to different boundary
equations. Thus, the Lagrange multiplier method does not appear to uniquely define the boundary equations.

While the extended system in Equation 4 can be solved directly to include the Lagrange multipliers,
these may be eliminated from the problem altogether, resulting in a boundary residual form,

Rb(Q) =

{
B(Q)− b

N
(
∂Q
∂τ +R(Q)

)}
. (5)

Here, N is a (n−m)×n matrix containing a basis for the nullspace of the boundary condition matrix, such
that

N

(
∂B

∂Q̃

)T
= 0. (6)

In essence, the Lagrange multiplier method provides a way to augment Dirichlet boundary conditions with
some combination of the equations governing mass, momentum and energy. The Lagrange multiplier method
is easily applied to the node-centered formulation because it makes use of the discretized equations of motion,
R(Q), at the boundary nodes. As previously stated, N depends upon the choice of Q̃, resulting in different
boundary residuals.

A novel aspect of this work is the verification of boundary conditions through rigorous grid refinement
studies. We do this for exact solutions which are available for certain simple configurations. However,
we desire a more general method that is applicable to a wide variety of boundary conditions and flow
equations that do not possess exact solutions. To accomplish this, we extend our previous work using the
method of manufactured solutions (MMS) [13], to include boundary conditions. This enables the use of a
single arbitrary manufactured solution to simultaneously verify the accuracy of both the interior scheme and
boundary conditions. This is accomplished by adding an MMS source term to both the Euler and boundary
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equations:
∂Q

∂τ
+ ∇ · F = S(x)

B(Q)− b = Sb(x) (7)

For the Lagrange multiplier method this results in a modified boundary residual of the form

Rb(Q) =

{
B(Q)− b− Sb(x)

N
(
∂Q
∂τ +R(Q)− S(x)

)}
. (8)

The proposed method of boundary verification does not require that the manufactured solution satisfy the
boundary conditions as required by other approaches[5]. This greatly simplifies the verification procedure,
and allows a single manufactured solution to be used to verify any number of boundary conditions.

We test three boundary conditions that make use of the Lagrange multiplier methodology. These are
denoted n-INV1, nINF1, and n-OUT1. Method n-INV1 for a node-centered inviscid wall sets the normal
velocity to zero and retains a combination of the mass, momentum, and energy equations:

B(Q) = un, b = 0, N =

1 0 0 0
0 ny −nx 0
0 −u −v 1

 . (9)

Here, n = (nx, ny)T is the outward pointing unit normal vector at the surface node, and un = nxu+ nyv is
the velocity in the normal direction.

The subsonic inflow condition n-INF1 specifies entropy, s, total enthalpy, h, and tangential velocity,
ut = −nyu+ nxv:

B(Q) =

 h
s
ut

 , b =

 hspec
sspec
ut,spec

 , N =
(
unh utv − nx(h+ 1

2q
2) −utu− ny(h+ 1

2q
2) un

)
(10)

Here, the subscript spec denotes a specified value and q is the velocity magnitude.
The final method using Lagrange multipliers is n-OUT1 for subsonic outflow. This method fixes static

pressure,

B(Q) = p, b = pspec, N =

−u 1 0 0
−v 0 1 0
−h 0 0 1

 . (11)

Again, we emphasize that the method of Lagrange multipliers provides an automatic way to determine
a complete set of boundary equations. Once we determine B(Q) and a set of variables Q̃, the remaining
equations are fixed through the nullspace, N . However, the actual form of N is dependent on the choice of
Q̃, which appears to be arbitrary. Further work is needed to determine which set of Q̃ and the resulting N
is best suited for various conditions.

2.1.2 Selection Matrix Method

A more intuitive method to obtaining a boundary residual is through a selection matrix that picks desired
combinations of the equations of motion. Using a selection matrix, A, we define the boundary residual as

Rb(Q) = Ω(Q) +A

(
∂Q

∂τ
+R(Q)

)
. (12)

Here, A selects certain combinations of the equations of motion which augment other boundary conditions,
Ω(Q). These conditions may be Dirichlet (D), Neumann (N), or extrapolated (E):

Ω(Q) = ΩD(Q) + ΩN (Q) + ΩE(Q). (13)
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Whereas the Lagrange multiplier approach only accommodates Dirichlet conditions, this framework allows
for general specification of virtually any type of boundary condition imaginable. It should be noted that
the Lagrange multiplier method is a subset of this more general approach, where ΩD(Q) = B(Q) − b, and
A = N augmented with rows of zeros.

This more general form is also easily modified for verification via MMS by introducing source terms for
Ω(Q) and the equations of motion themselves:

Rb(Q) = Ω(Q)− Sb(x) +A

(
∂Q

∂τ
+R(Q)− S(x)

)
. (14)

Here, Sb(x) acts on the Ω(Q) terms, and S(x) acts on the governing equations of motion.
We test four node-centered boundary conditions that make use of the selection matrix method. These

are denoted n-INV2, n-INV3, n-INF2 and n-OUT2. For n-INV2, a Neumann condition is set only for the
tangential velocity terms, while the mass and energy equations are used directly:

ΩD(Q) =


0
0
un
0

 , ΩN (Q) =


0

∂ut/∂n
0
0

 , ΩE(Q) = 0, A =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 (15)

In this manner, velocity is treated with a symmetry condition while mass and energy are conserved. These
types of symmetry conditions enforced with Neumann conditions have been advocated by many other re-
searchers for slip walls in inviscid flows [14, 15, 16].

Method n-INV3 uses Neumann conditions for all equations, completely omitting any contribution from
the Euler equations:

ΩD(Q) =


0
0
un
0

 , ΩN (Q) =


∂ρ/∂n
∂ut/∂n

0
∂(ρe)/∂n

 , ΩE(Q) = 0, A =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (16)

This condition is strictly a symmetry condition, but is often used at inviscid walls in practice.
For subsonic inflow method n-INF2, the selection matrix extracts the outgoing characteristic equation

at the inflow boundary, while three other conditions (total enthalpy, entropy, and tangential velocity) are
prescribed. Here we wish to select the equation associated with the outgoing un − c wave. To accomplish
this, the Euler equations are first rotated to a coordinate system with components normal (n) and tangential
(t) to the boundary,

R

(
∂Q

∂τ
+
∂Fx
∂x

+
∂Fy
∂y

)
=
∂Q′

∂τ
+
∂Fn
∂n

+
∂Ft
∂t

= 0. (17)

Here, the definitions of the rotation matrix, rotated solution, and flux vectors are

R =


1 0 0 0
0 nx ny 0
0 −ny nx 0
0 0 0 1

 , Q′ = RQ =


ρ
ρun
ρut
ρe

 , Fn =


ρun

ρu2n + p
ρunut
ρunh

 , Ft =


ρut
ρutun
ρu2t + p
ρuth

 . (18)

Equation 17 is then multiplied by the modal matrix, M−1n , containing the right Eigenvectors of the normal
flux Jacobian, An = ∂Fn/∂Q

′. Using the fact that M−1n AnMn = Λn = diag(un, un, un + c, un − c), leads to

∂Q̂′

∂τ
+ Λn

∂Q̂′

∂n
+M−1n AtMn

∂Q̂′

∂t
= 0, (19)

where Q̂′ = M−1n RQ. It is clear from this form that the fourth equation represents the characteristic wave
equation leaving the boundary. We wish to select this equation as part of the boundary specification. This
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can be accomplished by defining the selection matrix as

A =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

M−1n R, (20)

where

M−1n R =


1− (γ−1)q2

2c2 (γ − 1) uc2 (γ − 1) vc2 −γ−1c2
ut ny −nx 0

1
2c2 (γ−12 q2 − cun) 1

2c2 (nxc− (γ − 1)u) 1
2c2 (nyc− (γ − 1)v) γ−1

2c2
1

2c2 (γ−12 q2 + cun) − 1
2c2 (nxc+ (γ − 1)u) − 1

2c2 (nyc+ (γ − 1)v) γ−1
2c2

 (21)

The matrix M−1n R is equivalent to nxM−1x + nyM
−1
y , where M−1x and M−1y are the modal matrices of the

Cartesian flux Jacobians, Ax = ∂Fx/∂Q and Ay = ∂Fy/∂Q, respectively. The n-INF2 condition is completed
by specifying total enthalpy, entropy, and tangential velocity:

ΩD(Q) =


h− hspec
s− sspec
ut − ut,spec

0

 , ΩN (Q) = 0, ΩE(Q) = 0. (22)

The outflow case n-OUT2 is based on a similar approach as n-INF2, but selects the remaining three
characteristics at the outflow, while fixing the static pressure:

ΩD(Q) =


0
0
0

p− pspec

 , ΩN (Q) = 0, ΩE(Q) = 0, A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

M−1n R (23)

2.1.3 Weak Form Flux Implementation

A final method of boundary implementation suitable for node-centered schemes is through a modification of
the flux. Traditionally, this has been used at an inviscid wall by setting the convective portion to zero and
retaining only the pressure terms [2]:

Fn =


0
pnx
pny
0

 . (24)

Here, Fn is the directional flux at a boundary face with normal n = (nx, ny)T . We denote this method
n-INV4 in Table 1.

It is interesting to note that this method does not explicitly involve a boundary residual, and thus cannot
be verified using MMS and source terms as the other methods allow. Nonetheless, our results show that
this method performs very well as shown through grid refinement studies using exact solutions. It is also
interesting to note that this method does provide a water-tight formulation for node-centered schemes using
inviscid walls.

2.2 Cell-Centered Boundaries
Unlike node-centered schemes, cell-centered schemes do not contain unknowns that lie directly on the bound-
ary. Instead, ghost nodes are introduced, as shown in Figure 1(b). These ghost nodes do not lie within control
volumes and do not contain flux balances from the governing equations. For this reason, it is difficult to
apply any discretized equations of motion (e.g. mass, momentum, or energy) at boundary locations. It
is at these ghost node locations that the boundary residual must be satisfied at steady-state. Because of
the difficulty of obtaining discretized equations of motion at ghost nodes, we limit the boundary condition
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choices to a combination of Dirichlet, Neumann, or extrapolation conditions:

Rb(Q) = Ω(Q) = ΩD(Q) + ΩN (Q) + ΩE(Q). (25)

These conditions may also be verified using MMS by adding a source term to the boundary residual:

Rb(Q) = Ω(Q)− Sb(x). (26)

An important point is that for extrapolation conditions, the source term should be set to zero. This is
because in the limit of grid refinement, the extrapolated value will equal the manufactured solution exactly.

We test six cell-centered boundary conditions that make use of the ghost node method. These are denoted
c-INV1, c-INV3, c-INF1, c-INF2, c-OUT1, and c-OUT2 in Table 1. Method c-INV1 for an inviscid wall sets
the normal velocity to zero, while extrapolating density, tangential velocity, and total energy:

ΩD(Q) =


0
0
un
0

 , ΩN (Q) = 0, ΩE(Q) =


ρ− ρE
ut − utE

0
ρe− (ρe)E

 . (27)

Here, the subscript E refers to the state (linearly) extrapolated from the interior of the domain.
Method c-INV3 for an inviscid wall sets the normal velocity to zero, but uses Neumann conditions for

density, tangential velocity, and total energy:

ΩD(Q) =


0
0
un
0

 , ΩN (Q) =


∂ρ/∂n
∂ut/∂n

0
∂(ρe)/∂n

 , ΩE(Q) = 0. (28)

The Neumann conditions may be more appropriate for a symmetry condition, but this is often used for an
inviscid wall in practice.

Method c-INF1 for subsonic inflow fixes the thermodynamic stagnation state and incoming tangential
velocity, while extrapolating the velocity normal to the boundary:

ΩD(Q) =


h− hspec
s− sspec
ut − ut,spec

0

 , ΩN (Q) = 0, ΩE(Q) =


0
0
0

un − unE

 . (29)

Method c-INF2 for subsonic inflow uses Riemann invariants normal to the boundary, entropy, and tan-
gential velocity. The Riemann invariants have the usual definition for an ideal gas,

R+ = un +
2c

γ − 1
, R− = un −

2c

γ − 1
, (30)

where c is the speed of sound. The boundary condition then becomes,

ΩD(Q) =


0

R− −R−spec
ut − ut,spec
s− sspec

 , ΩN (Q) = 0, ΩE(Q) =


R+ −R+

E

0
0
0

 (31)

The subsonic outflow condition c-OUT1 specifies the static pressure, and extrapolates density and veloc-
ity:

ΩD(Q) =


0
0
0

p− pspec

 , ΩN (Q) = 0, ΩE(Q) =


ρ− ρE
u− uE
v − vE

0

 . (32)
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The subsonic outflow condition c-OUT2 is similar to c-INF2, but extrapolates tangential velocity and
entropy to be consistent with the number of characteristics leaving the domain:

ΩD(Q) =


0

R− −R−spec
0
0

 , ΩN (Q) = 0, ΩE(Q) =


R+ −R+

E

0
ut − utE
s− sE

 . (33)

The final condition listed in Table 1 is c-INV2. This condition is similar to n-INV4, which weakly modifies
the flux at the boundary to only contain the pressure terms, as in Equation 24. Thus only pressure needs
to be extrapolated. As in n-INV4, it is not clear what the boundary residual is for this method. Thus, it is
difficult to verify the method using MMS and source terms as the other methods allow.

3 Results
In this section we present results of the various boundary condition implementations in one and two di-
mensions for node- and cell-centered schemes. Four cases are considered: (1) quasi-1D nozzle flow, (2) 2D
manufactured Euler solution in a square domain, (3) Ringleb Flow, and (4) subsonic flow over a NACA 0012
airfoil. For all cases, we perform grid refinement studies with the various boundary conditions listed in Table
1. At times, certain schemes fail to produce second-order results, in which cases explanations are given to
account for these observations.

3.1 Quasi-1D Euler Equations
The quasi-1D Euler equations are a 1D formulation with added cross sectional area, a(x), useful for nozzle
flows. The quasi-1D Euler equations are defined as:

∂Q

∂t
+
∂F

∂x
= Sp (34)

Q = a

 ρ
ρu
ρe

 , F = a

 ρu
ρu2 + p
ρuh

 , Sp =

 0
∂a
∂xp
0

 (35)

In addition we assume ideal gases and constant specific heats. For the area, we use

a(x) = a0

(
1 +

1

2
cos(2πx)

)
, (36)

where a0 = 2/3 to make the inlet and outlet area unity. In addition, the domain extents are x ∈ [0, 1]. A
2D view of the nozzle can be seen in Figure 2.

We solve the governing equations using a node-centered approach to test inflow and outflow conditions
n-INF1, n-INF2, n-OUT1, and n-OUT2. Reduction of these methods from two dimensions to one dimension
is straightforward. In order to verify the accuracy of the boundary methods, we consider the exact solution,
which for fully subsonic flow, may be found simply from preserving constant entropy, enthalpy, and mass
flux. For all tests, M = 0.15 was selected at the inflow to ensure subsonic flow at the throat.

While the quasi-1D Euler equations possess exact solutions, we also formulate a manufactured solution
to test our MMS verification procedure of boundary conditions. The manufactured solution is chosen as

ρMMS(x) = c1 + cx1sin(ax1x)

uMMS(x) = c2 + cx2cos(ax2x)

pMMS(x) = c3 + cx3sin(ax3x)

(37)

9



Figure 2: Converging-diverging nozzle used for the Quasi-1D Euler equations.

These constants are selected such that the manufactured solution remains physically meaningful (e.g. positive
density). The period of the sinusoidal oscillation is set to approximately 20 times the length scale of the
problem to ensure a smooth solution in the asymptotic range of convergence. Values for the constants are
shown in table 2.

Constant Value
c1 1.0
cx1 0.15
ax1 0.075π
c2 70.0
cx2 7.0
ax2 0.15π
c3 1.0× 10−5

cx3 2.0× 10−4

ax3 0.1π

Table 2: A list of the MMS constants used in Equation 37 for the quasi-1D Euler solution verification.

With these manufactured solutions defined, it is necessary for us to determine the accompanying source
terms, S(x) and Sb(x), in Equation 14. The interior source terms are computed in the usual manner by
setting the source terms to the residual quantity remaining after the manufactured solution is substituted in
the governing equations. The boundary source term is computed in a similar fashion, but considering only
the boundary equations, such that

Sb = Ω(QMMS), (38)

where QMMS is the chosen manufactured solution. For example, the n-OUT2 condition, which specifies the
exit pressure requires a boundary source term computed with

Sb = Ω(QMMS) =

 0
0

pMMS − pspec

 (39)

With these definitions of S and Sb is then possible to solve Equation 12 to verify the interior scheme and
boundary conditions simultaneously using MMS.

The results of the grid refinement study using the exact and manufactured solutions for the quasi-1D
nozzle are shown in Figure 3. All methods produce second order accurate results. These results highlight
two important points. First, the choice of boundary conditions that lead to consistent formulations does not
appear to be unique. In this case the Lagrange multiplier method and the characteristic matrix selection
method produce different equations. However, both equation sets lead to second-order accuracy. While the
choice of equations is not unique, later we show examples of boundary conditions that are definitely wrong
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(b) Error obtained from manufactured solution

Figure 3: Grid refinement study for quasi-1D Euler equations using methods n-INF1, n-INF2, n-OUT1, and
n-OUT2 with exact and manufactured solutions.

and degrade the accuracy.
A second important point is that the MMS procedure provides reliable information regarding the accuracy

of the boundary formulation. In this case, an exact solution is available. However, in the vast majority of
cases that use more complex equations and boundary conditions, exact solutions are not available. In these
cases, the MMS procedure provides a straightforward way to measure the accuracy of boundary conditions.
By determining the proper forms of S(x) and Sb(x), it is possible to use an arbitrary manufactured solution
to verify boundary conditions along with the interior scheme. The next case highlights some important
considerations when choosing forms for the manufactured solution.

3.2 Manufactured Solution in Square Domain
Here, we extend the ideas above to two-dimensional flows and further explore verification via manufactured
solutions on a simple square domain. We consider the unit square domain shown in Figure 4. The domain
is discretized with perturbed triangular cells, shown in Figure 4(a), to avoid any fortunate cancellation of
solution error due to grid regularity. Velocity vectors for the chosen manufactured solution is shown in Figure
4(b). The manufactured solution follows a sinusoidal form similar to the solution used for the quasi-1D nozzle
flow. An example for density is:

ρ(x, y) = c1 + cx1sin(ax1x) + cy1sin(ay1y) + cxy1cos(axy1xy). (40)

Here the constants are chosen to be physically meaningful in some sense. The other flow variables (u, v, p)
use similar forms. For the computation of source terms in multiple dimensions it is essentially necessary to
use a symbolic math tool, such as the one contained in Matlab.

We systematically test the accuracy of various boundary conditions from Table 1 in isolation. To isolate
a given boundary type, pure Dirichlet conditions were enforced on all the other boundaries of the domain
except the one in question. The inviscid wall cases (INV) were applied on the top of the domain, inflow
(INF) on the left side, and outflow (OUT) on the right side. With some of the methods (n-INV4 and c-INV2)
it is not possible to apply the MMS procedure since it is unclear what the exact governing equations are for
these weak forms.

Figure 5 shows the results of the tests performed for all the available MMS boundary types for node-
and cell-centered methods. Figures 5(a) and 5(c) show the results for the isolated inviscid wall for both
discretization schemes. The inflow and outflow results are combined into Figures 5(b) and 5(d) for node- and
cell-centered methods respectively. The grid refinement study shows that Dirichlet, Neumann, extrapolation,
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(a) 32× 32 perturbed triangular mesh (b) Manufactured solution velocity vectors.

Figure 4: Mesh and manufactured solution used for boundary condition verification.

and the equations of motion themselves are all reliable second-order accurate boundary conditions. The MMS
procedures proves successful at verifying the proper implementation of the interior and boundary governing
equations. A subtle but important point is that this procedure assumes the boundary normal vectors are
exact at the nodes for the node-centered scheme. This assumption will be investigated further.

One important consideration when using MMS verification for boundary conditions is the characteristic
directions of chosen manufactured solution. This is illustrated by considering inviscid wall conditions. Fig-
ure 4(b) illustrates that we have chosen the flow constants such that we obtain flow diagonally towards the
upper-right of the domain. Because an inviscid wall specifies one piece of information (un = 0), this limits
the location at which we can implement MMS verification for an inviscid wall to the top of the domain. This
was our procedure for all the results obtained above. Placing the inviscid wall condition at the bottom of the
square domain violates the wave propagation characteristics of the manufactured solution because it would
require three specified pieces of information, not one. The effect of this phenomenon is shown in Figure 6,
which shows the comparison of density error for an inviscid wall (c-INV3) at the top and bottom of the
domain. It is noteworthy to mention that other inviscid wall boundary formulations (n-INV1-3) would not
converge when enforced at the bottom of the domain due to stability issues. It is therefore critical that the
manufactured solution and boundaries are chosen such that the characteristic direction is not violated for
verification to be successful.

3.3 Ringleb Flow
In the previous section it was shown that all boundary condition methods tested are second order accurate
using the method of manufactured solutions. We could not test methods n-INV4 and c-INV2 because we do
not know the form of the underlying boundary residual, Rb. Here, we examine the same methods, including
n-INV4 and c-INV2, using Ringleb flow [17], which is an exact solution of the Euler equations. The results
of this test case highlight the importance of selecting physically correct conditions for a given problem.
Just because a particular boundary condition is implemented in a mathematically consistent way (passes an
MMS verification test for example), does not mean that it is the correct boundary condition for a given set
of physics. Additionally, we highlight the difficulties of using derived quantities, such as entropy, as measures
of solution error. Finally, this case also reveals the importance of computing boundary normals correctly for
certain node-centered methods.

Ringleb flow describes inviscid compressible flow turning 180o and involves subsonic, transonic, and
supersonic regimes. Here, we focus on a subsonic portion of the flow. The exact solution is obtained via a
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(a) inviscid wall - node-centered
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(b) inflow/outflow - node-centered
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(c) inviscid wall - cell-centered

20 40 60 80 100
1/h

10-7

10-6

10-5

10-4

10-3

RM
S 

D
en

si
ty

 E
rr

or

c-INF1

c-OUT1

c-INF2
c-OUT2

1

 2

(d) inflow/outflow - cell-centered

Figure 5: Grid refinement study for a variety of boundary formulations using MMS.
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Figure 6: Example of the violation of characteristic directions for MMS solutions

hodograph method in the form of (x, y) coordinates parameterized by velocity magnitude, q, and streamline
constant, k, which is the inverse of the stream function, ψ = 1

q sin θ. Here, θ is the flow angle. The solution
may be expressed as

x(q, k) =
1

2ρ

(
1

q2
− 2

k2

)
+
J

2
(41)

y(q, k) = ± 1

kqρ

√
1− q2

k2
, (42)

where

J =
1

c
+

1

3c3
+

1

5c5
− 1

2
log

(
1 + c

1− c

)
c =

√
1− γ − 1

2
q2

ρ = c
2

γ−1 .

Given a location (x, y), it is possible to solve for the corresponding (q, k) pair with a few Newton iterations.
We dimensionalize the flow solution with desired stagnation quantities.

A series of increasingly refined meshes is used to verify the accuracy of boundary conditions. The mesh
and exact solution for Ringleb flow are shown in Figure 7. The domain consists of two streamlines, which
are treated as inviscid walls, as well as an inflow and outflow at the bottom and top portions of the domain,
as shown in Figure 7(a). We test each boundary type in isolation by enforcing Dirichlet conditions on all
boundaries but the one in question. The symmetric density contours of the exact solution are shown in
Figure 7(b).

Figures 8-9 show the results for all boundary conditions listed in Table 1. Four important observations
are made in reference to these figures. First, we observe in Figures 8(a) and 8(c) a substantial decrease
in accuracy for the n-INV2, n-INV3 and c-INV3 cases. These three conditions, which were all verified
as second-order accurate using MMS, now exhibit first-order accuracy when applied to Ringleb flow. At
first this seems surprising, but may be explained by the fact that the MMS verification only addresses
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(a) 16 x 32 triangular mesh. (b) Field plot of Ringleb flow density field.

Figure 7: Configuration for Ringleb flow test case.

the mathematical correctness of the discretization of the chosen conditions, not the appropriateness of the
conditions themselves. In all three failed methods, Neumann terms are included in the inviscid boundary
conditions. The Neumann conditions are rather arbitrary and do not correctly represent the physics for this
case. In fact, they are in direct conflict with the governing Euler equations, which explains the reduced
accuracy. This case illustrates the critical importance of selecting appropriate boundary conditions for a
given set of physics.

A second observation is made by examining Figure 8(a), which shows the effect of approximating the
boundary normal vector at nodal locations for method n-INV1. For Ringleb flow, the exact normal vectors
may be deduced from the exact solution, which provides x and y locations along the inviscid wall streamline
boundaries. We compute these exact normals and observe the effect on the accuracy compared to the
approximate normal vectors computed as the average of the surrounding face normals at a node. We observe
that using exact normals and approximate normals both result in second-order behavior. However, the level
of error using exact normals is nearly half the error using approximate normals. For other cases with more
complex geometry, the effects may be amplified. Methods to compute boundary normals consistently for
complex geometry is an area of future work.

A third observation is that all inflow and outflow conditions tested show sharp second-order accuracy,
as shown in Figures 8(b) and 8(d). All of these methods are physically meaningful and compatible with
the current problem. Thus, the MMS results for these conditions are validated. Again, this demonstrates
that the MMS verification procedure is sufficient if physically consistent boundary equations are used. This
is important because it provides a method for the verification of more complex boundary conditions and
interior schemes for which no exact solutions are known, such as averaged equations with turbulence models,
multiphase flow models, or combustion.

Finally, it is interesting to consider the impact of the boundary discretizations on other quantities besides
the conserved variables, such as entropy. Entropy is sometimes used as a measure of error for inviscid flow
cases for uniform inflow [18, 19, 20]. Figure 9 shows the convergence of surface entropy for all inviscid
wall conditions in Table 1. This figure shows that none of the methods are truly second order accurate
considering the entropy. Recall that many of the methods were second order accurate considering the error
in the conserved variables, as shown in Figures 8(a) and 8(c). This may be explained by the fact that
isentropic flow is only attained if all the conservation laws are satisfied at all degrees of freedom. At the
boundary locations, we do not solve the full set of conservations laws. Thus, entropy may not demonstrate the
same convergence behavior as the mesh is refined. It may be possible to formulate boundary conditions which
preserve specific flow features, such as isentropic flow. For example, entropy-based boundary conditions have
been explored by Balakrishnan and Fernandez [4]. The next case also highlights potential difficulties with
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Figure 8: Grid refinement study for various boundary formulations using Ringleb flow.

16



1/h

S
u

rf
a

c
e

 E
n

tr
o

p
y

200 400 600 800

10
0

10
1

10
2

10
3

1.2

0.8

nINV2

nINV3

nINV1,
Exact

nINV1

nINV4

1.6

(a) Inviscid Wall - node-dentered

1/h

S
u

rf
a

c
e

 E
n

tr
o

p
y

100 200 300 400

10
1

10
0

10
1

10
2

10
3

1.2

1.5
cINV3

cINV1,
cINV2

(b) Inviscid Wall - cell-centered

Figure 9: Grid refinement study for inviscid wall boundary formulations using Ringleb flow using entropy as
a measure of error.

using entopy as a measure of error.

3.4 NACA 0012 Airfoil
The last case we present is inviscid flow over a NACA 0012 airfoil at M = 0.5 and α = 3.0o. We examine
the effects of the various inviscid wall implementations in Table 1 on the entropy production at the airfoil
surface as well as other qualitative aspects. We employ unstructured triangular grids with 40, 80, 160, and
320 surface points, respectively.

The results of the grid refinement test are shown in Figure 10 for both node- and cell-centered schemes.
For the node-centered inviscid wall methods, similar trends can be seen in this case as are seen in the Ringleb
flow case. Methods n-INV2 and n-INV3 clearly give first-order results. Initially, methods n-INV1 and nINV-
4 appear to give second-order results. However, further refinement indicates first-order accuracy in the
entropy, which is consistent with the Ringleb flow results. It is also clear from this case, that symmetry-type
conditions are not suitable for inviscid walls. Qualitatively, errors in the Mach contours are apparent with
the symmetry-type conditions as well. Figures 11(a)-11(b) show Mach contours for method n-INV1 and
n-INV2, respectively. At the surface, method n-INV2 exhibits oddly-shaped Mach contours as a result of
symmetry enforcement.

Like the node-centered schemes, the entropy produced from cell-centered schemes reduces between first-
and second-order, as shown in Figure 10(b). However, this does not necessarily mean that the scheme is
first-order in the conserved variables, as demonstrated bye the Ringleb flow case. Similar qualitative errors in
the Mach contours can be seen for the node-centered symmetry conditions, as shown in Figures 11(a)-11(b).
Similar Errors have been noted by Wang [19] and Barth [21]. The extrapolation condition in Figure 11(a)
shows smooth Mach contours, while the symmetry condition in Figure 11(b) displays contour shape errors.

4 Conclusions
In this work, we present a general formulation for arbitrary boundary conditions for node- and cell-centered
finite volume schemes. These conditions may include any combination of Dirichlet, Neumann, extrapolation,
and, in the case of node-centered schemes, the equations of motion themselves. The ease with which we may
apply the conservation equations of motion is one advantage of node-centered schemes over cell-centered
schemes. This avoids the need for extrapolation or extra Neumann conditions which may conflict with the
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Figure 10: Grid refinement study for various boundary formulations using flow around a NACA 0012 airfoil.

(a) method n-INV1 (b) method n-INV2
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Figure 11: Mach contours for various inviscid wall treatments of a NACA 0012 inviscid airfoil at M = 0.5,
α = 3.0o.
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interior scheme or physical configuration of the problem.
Importantly, we extend the traditional use of the method of manufactured solutions to include boundary

conditions. By defining a boundary residual equation to accompany the interior residual equation, MMS
can be used in both node- and cell-centered contexts to verify the combined interior-boundary scheme. In
this manner, a single manufactured solution can be used to verify any number of boundary conditions con-
veniently. Computation of boundary source terms is straightforward, generally requiring much less algebraic
manipulation than interior source terms.

A number of test cases, including quasi-1D flow and fully 2D flow demonstrate the use of the MMS
procedure. It is found that the manufactured solution must be chosen such that characteristic directions
are respected during the boundary condition verification procedure. While the manufactured solution is
arbitrary, boundary locations should be chosen to roughly coincide with the physics of the manufactured
solution. If this practice is violated, erroneous results will be obtained or non-convergence will result.

While the correct choice of boundary conditions for a given problem is often not unique, a key finding
from studies involving Ringleb flow and inviscid airfoils is that certain boundary conditions may conflict with
the interior scheme or the problem configuration. An example is the use of Neumann symmetry conditions
for inviscid walls. Even though the symmetry condition is verifiably second-order accurate using the MMS
procedure, it fails to produce the proper results when applied in an inappropriate physical context. Thus, the
MMS procedure is only valid when used with physical insight to apply boundary conditions in the correct
way. If used correctly, the MMS procedure provides a method for the verification of complex boundary
conditions and interior schemes for which no exact solutions are known. In addition, we find it is best to
use the conserved variables directly to measure the solution error, as opposed to derived quantities, such as
entropy. Entropy appears to converge as second-order only when all conservation laws are satisfied, which
is not the case for the boundary methods investigated in this paper. It may be possible to formulate special
entropy preserving boundary conditions, which preserve isentropic flow.

Future work will focus on modifications of the node-centered approach to allow for a water-tight flux
formulation. One possible approach is to introduce ghost nodes into the node-centered formulation in a
manner similar to the cell-centered formulation. Another important area of investigation includes consistent
methods for boundary normal computation. A possible strategy includes locally reconstructing the surface
description from surrounding geometry information using a least squares procedure. Derivatives of the
reconstructed surface may then be used to estimate normal vectors.
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