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Abstract: The leading edge receptivity to vorticity disturbance is investigated by a 
three-dimensional numerical simulation. The disturbances are given by a two 
dimensional periodic vorticity fluctuation at the upstream boundary as a boundary 
condition. The vorticity fluctuation inside the boundary layer becomes more 
intense when the vertical scale of the oncoming vorticity fluctuation is larger. It is 
shown that the tangential velocity induced at the stagnation point has a strong 
influence on the receptivity. 
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1     Introduction 
The concept of the receptivity was proposed by Morkovin[1] as a key problem in a boundary layer 
transition process. Because the boundary layer is a vorticity layer, this study focuses on the changes in 
the vorticity fluctuation pattern to understand the receptivity. In this study, the leading edge 
receptivity against incoming vortical disturbances is numerically investigated, focusing on the 
deformation of vorticity patterns inside a boundary layer. 

 

2     Numerical method 
Three-dimensional incompressible Navier-Stokes equations are solved by the finite difference 
method using a body-fitted coordinate on a regular grid system. A third-order upwind difference 
scheme is used in the convection terms. For the other terms, the second-order central difference 
scheme is employed. The third-order Adams-Bashforth explicit scheme is used for the convection 
terms and the Crank-Nicolson implicit scheme is applied to the viscous terms. In addition, the multi-
directional finite different scheme is used for the discretization of the all terms in the N-S equations. 
Figure 1 shows the computational domain around a flat plate with an elliptic leading edge of an 
aspect ratio of 1:5, where a is the leading edge length and b is the half of the thickness of the flat 
plate. The origin of the Cartesian coordinate system is set at the tip of the leading edge of the plate, 
where x, y and z axes denote the streamwise, vertical and spanwise directions, respectively. The 
numbers of grids are 449 points in ξ direction, 193 points in η direction, and 6 points in ζ direction. 
The flat plate length is four times larger than the length of the leading edge. Reynolds number based 
on the leading edge length a and the freestream velocity U

∞
 is 4.0×104. The spanwise length of the 

calculation region is b. 
As for the velocity boundary conditions, the non-slip condition is imposed at the wall, the 
Sommerfeld radiation condition is applied at the outlet boundary and the Dirichlet condition is 
enforced at the upper and lower boundaries. As for the pressure boundary conditions, the Dirichlet 
condition is used at all boundaries and at the wall. The pressure averaged over the calculation field is 
adjusted to be unity. After the base flow becomes steady, two-dimensional disturbances are added to 
the freestream by periodically changing only the streamwise velocity u at the upstream boundary. 
The following equation describes the disturbance, 
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where f is the non-dimensional frequency, ly is the length of the 
oscillation region, A is the amplitude, α = 1.25643[2], and s is the 
parameter corresponding to the vortex core radius. Also, t is the 
time. In this study, the simulations are performed for three different 
scales of s/b, which are 1, 2 and 3. The amplitude of the introduced 
fluctuation A is 1% of the freestream velocity and the non-
dimensional frequency f is 1. 

 

3     Numerical Results and Discussion 
The RMS values of the velocity fluctuations in the wall-tangential direction measured at the grid 
points next to the wall are plotted in Fig.2. Figure 2 shows that the velocity fluctuations in the wall-
tangential direction become larger in proportion to the scale parameter s downstream. There is also a 
noticeable difference between the u'rms at the stagnation point depending on s/b. It should be noted 
that u'rms at the stagnation point corresponds to the v component velocity there. Figure 3 depicts the 
RMS values of the vertical velocity fluctuations v'rms in the freestream along the y/a = 0 line. It can be 
found that the v'rms reaches its peak very close to the leading edge just before it is damped by 
viscosity. It is also shown that v'rms is influenced by the vortex core radius s. These results imply that 
the leading edge receptivity is governed by the periodic tangential velocity fluctuations at the 
stagnation point. 
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4 Conclusion 
A numerical study is performed to investigate a relation between the vorticity disturbances and the 
leading edge receptivity. Freestream disturbances are given as a two dimensional periodic vorticity 
fluctuation at the upstream boundary. The result shows that the velocity fluctuation inside a boundary 
layer becomes more intense when the vertical scale of the oncoming vorticity fluctuation is large. It 
is found that the tangential velocity fluctuations near the wall at the stagnation point strongly affect 
the amplitude of velocity fluctuations inside a downstream boundary layer. 
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Figure 1 Computational domain 
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Figure 2 Distribution of the tangential velocity fluctuations 
near the wall 

Figure 3 Distribution of the vertical velocity 
fluctuations in the freestream along y =0 
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(a) Vicinity of the 
stagnation point 

(b) Whole distribution 


