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Abstract: A Runge-Kutta Discontinuous Galerkin method (RKDG) to solve
the parabolic and source parts of reactive Navier-Stokes equations written
in conservation form is presented. The parabolic operator uses two different
recovery methods. The physical model involves complex chemistry and detailed
transport. Test cases in structured and unstructured meshes are presented.
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1 Introduction

In [1], we described a Runge-Kutta Discontinuous Galerkin (RKDG) method that solves the
hyperbolic part of the reactive NS equations written in conservation form. Herein, we focus
our attention on the parabolic and source terms of the reactive NS equations. The transport
fluxes are expressed in terms of transport coefficients and macroscopic variable gradients. The
transport coefficients are functions of the state of the mixture, i.e., of pressure, temperature and
species mass fractions. The molar production rates are of Maxwellian type and are compatible
with the law of mass action.

Nowadays, there are two categories of methods to solve the parabolic terms. In the first
one, the scheme is devised through a mixed formulation by introducing an equation for the
gradient that takes into account the jump of the solution at interfaces. The scheme needs to
be stabilized by either interior penalty (IP) terms or numerical viscosity terms with parameters
to be adjusted. Depending on the formulation, the resulting scheme is either compact or non
compact. Among the main contributors, we can cite Bassi and Rebay with their BR1 and BR2
methods, Baumann and Oden, Cockburn and Shu with the LDG method, Peraire and Persson
with the CDG method, Liu and Yan with the DDG method, Brezzi and al. with the symmetric
IP method. Gassner and al. show the link between their diffusive generalized Riemann solver
and the IP approach.

A second category is based on local reconstruction or recovery of the solution to smooth the
discontinuities. van Leer [2]-[3] was the first to propose the so-called Recovery method where
the viscous fluxes at element boundaries are computed by merging the adjacent elements and
defining on this new element a locally smooth P2k+1 recovered solution that is in the weak
sense indistinguishable from the piecewise discontinuous Pk solution. This method eliminates
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the artificial introduction of penalty terms and the tuning of parameters. This approach is very
accurate and efficient on structured grids [4] but an impediment is the construction of the local
merging basis and the need to solve a linear problem at each interface which can be awkward if
we use an adaptive strategy on unstructured grids. On unstructured grids, a simpler numerical
procedure is chosen (EDG method) [5]. This method is a sequel to the shift cell technique that
uses the Green formula that reconstructs the gradient by projection on the shift cell basis. For
2-D simulations, the jumps across element boundaries are eliminated in the computation of the
viscous fluxes using a projection of the piecewise Pk discontinuous solution on the Pk basis of
the overlapping rectangular elements. In this paper, we use both approaches, van Leer recovery
method on the structured meshes and the EDG method on the unstructured meshes.

Because of the great number of equations, the expressions of the transport coefficients and
the chemical reactions, it appears judicious to limit the method order to DGP 2 with the reactive
flows in order to have realistic computational costs. In all the simulations, a third-order TV D
Runge-Kutta RK3 scheme is associated with a DGP 2 approach. 1-D test cases with RK3DGP 2

are compared with a 6th order finite difference code. The first case is the 1-D propagation of
a complex acoustic waves produced by a viscous gaseous interface. The second case is a 1-D
sinusoidal reactive mixing of mass and temperature. And last, 2-D simulations are proposed on
structured and unstructured grids. The first one concerns the diffusion of a circular thermal and
density interface. The second test case presents a draughtboard reactive mixing H2−O2 within
a varying temperature field, first in a flow at rest (low Mach number flow). Then, the fields are
distorted by a strong unsteady shear flow (subsonic and supersonic flows) (see Fig. 1).

Figure 1: Temperature field at t = 6. 10−4s with a subsonic flow (left: Cartesian grid results
with 10000 elements; right: triangular grid results with 8256 elements).
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