
Seventh International Conference on

Computational Fluid Dynamics (ICCFD7),

Big Island, Hawaii, July 9-13, 2012

ICCFD7-2012-3802

Parallel Output-Adaptive Solution Strategies for Unsteady

Aerodynamics on Deformable Domains

Steven M. Kast, Marco A. Ceze, and Krzysztof J. Fidkowski
University of Michigan, USA

Abstract: We present an output-based adaptation strategy for high-order discretizations on de-

formable domains. The equations are solved with a discontinuous Galerkin discretization using an

arbitrary Lagrangian-Eulerian approach. Discrete unsteady adjoint solutions, derived for both the

state and the geometric conservation law, provide scalar output error estimates and drive adaptive

refinement of the space-time mesh. Spatial adaptation is performed using dynamic order refine-

ment on a fixed tessellation of the domain. Temporal refinement consists of time slab resizing.

In addition, a dynamic-repartitioning load balancing strategy is used for parallel computations.

Results for the compressible Navier-Stokes simulations demonstrate accuracy of the error estimates

and efficiency of the proposed output-based adaptation approach.

Keywords: Mesh Motion, Geometric Conservation Law, Discontinuous Galerkin, Output Adapta-

tion, Unsteady Adjoint

1 Introduction
As computational fluid dynamics simulations become more complex, estimates of discretization error are

of increasing interest for improving both robustness and accuracy. Output-error estimates are especially

suited for this task as they provide numerical error bars on quantities of engineering interest. Furthermore,

these estimates can be localized for adapting the mesh to improve output accuracy.

This work considers combined temporal and spatial refinement for unsteady simulations on deformable

domains. Such simulations have far-reaching applications, from bio-inspired flight to aircraft maneuver and

flutter analysis. The runs are generally computationally intensive and the resulting solutions are often rich

in features. We show that for these problems output error estimation and adaptation can have a significant

impact on robustness. The present research is a continuation of previous work in unsteady output-based

adaptation on static meshes [1]. The discretization and error estimation extend naturally to the geometric

conservation law employed on deformable domains, and the required modifications are discussed.

2 Discretization, Error Estimation, and Adaptation
We solve a system of PDEs on deformable domains by mapping the equations to a static reference domain

using an arbitrary Lagrangian-Eulerian (ALE) approach [2], as illustrated in Figure 1. Due to the nonlinear

and non-polynomial nature of general mappings, a constant state in the physical domain will generally not

be representable using a standard polynomial basis in the reference domain. We address this problem with

a geometric conservation law (GCL) as described in [2].

We employ an output-adjoint driven unsteady error estimation and adaptation strategy, as described in

[1]. Specific to the case of mesh motion is the discretization of the adjoint equation associated with the GCL

and the effect of this adjoint on error estimates. Adaptation is performed after localizing the adjoint-weighted

residual error estimate to individual space-time elements, and after estimating the output error anisotropy

by projecting the adjoint to solution spaces semi-refined in space or time.

1



Reference domain: �X,uX , �FX
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Figure 1: Summary of the mapping between reference and physical spaces.

3 Sample result
The result of a sample verification study for a problem that does not in fact require mesh motion is

illustrated in Figure 2 and Table 1. In this case an initial square density perturbation is allowed to evolve

for a short period of time, after which the vertical force on the left wall is measured. The system is governed

by the compressible Navier-Stokes equations. The output convergence plot demonstrates the accuracy of the

error estimates and the relatively small effect of the geometric conservation law on the output of interest.

(a) Density perturbation, t = 0 (b) Density, t = 2
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Figure 2: Initial- and final-time meshes and densities, and convergence of a final-time force output.

GCL No GCL No Motion
Run δJest ∆Jact % Error δJest ∆Jact % Error δJest ∆Jact % Error
p = 1 -4.170e-3 -4.020e-3 3.73 -4.443e-3 -4.489e-3 1.03 -1.687e-4 -2.882e-4 41.44
p = 2 -4.746e-4 -5.080e-4 6.58 -5.782e-4 -6.115e-4 5.46 -5.922e-5 -7.026e-5 15.70
p = 3 -1.551e-4 -1.543e-4 0.49 -2.448e-4 -2.438e-4 0.40 -1.610e-5 -1.555e-5 3.51
p = 4 -1.022e-4 -1.008e-4 1.40 -1.626e-4 -1.608e-4 1.12 -7.308e-6 -7.015e-6 4.18

Table 1: Relative accuracy of error estimates for motion and no-motion cases at different orders p.
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