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Abstract: In this study, a new dynamic model of vortex cavitation is proposed as 

an approximate solution of the unsteady axisymmetric Navier-Stokes equation. 

This model provides unsteady behaviors of a sub-surface vortex, i.e., development 

of the vortex, occurrence of the vortex cavitation, evolution and contraction of the 

cavitating radius. In addition, the effect of surface tension is considered in the 

model. The simulation results under steady and fluctuating far-field pressure 

conditions show that the model has the ability to simulate the vortex cavitation. 
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1     Introduction 
 
The vortex cavitation due to a sub-surface vortex can be observed in a lot of industrial scenes, such as 

a pump intake or a tip of impeller blade. A great deal of studies have been conducted to suppress the 

cavitation occurrence because noise, vibration and/or erosion can be induced by the vortex cavitaion. 

Also in our study on sodium-cooled fast reactors, the vortex cavitaion near the intake mouth of the 

outlet pipe from the reactor core is investigated experimentally and numerically to establish the 

cavitation-free design. However, the direct numerical simulation of the vortex cavitation has a great 

difficulty, that is, the cavitating radius is often very small to require an unrealistically fine mesh for an 

accurate numerical simulation. In such a case, it is preferable to simulate the vortex cavitation with a 

cavitation model. In past researches, the Rayleigh-Plesset (R-P) type cavitation model [1] is employed 

and the vortex cavitaion is simulated as a series of gas bubbles along the sub-surface vortex core. This 

type of numerical simulations gives some useful knowledge, however, physically more realistic model 

should be employed to simulate the vortex cavitation with high accuracy. Therefore, in this study, the 

authors propose a new modeling of the vortex cavitation based on the axisymmetric Navier-Stokes 

(N-S) equation. In concrete term, an approximate solution of the N-S equation is derived and the 

radial pressure distribution is calculated from the solution. Then, the cavitating radius is determined 

by comparison of the calculated pressure with vapor pressure. The surface tension is also considered 

in the model to calculate the cavitating radius accurately. Several simulations are performed under 

various far-filed and surface tension conditions to confirm the physical adequacy of the proposed 

cavitation model. 

 

2     Dynamic Vortex Cavitaion Model 
 
With the assumptions of the axisymmetric vortical flow along a sub-surface vortex core and the 

uniform axial velocity in radial direction, the new vortex cavitation model is obtained as an 

appropriate solution of the unsteady axisymmetric N-S equation. Namely, the circumferential 



velocity, v  is written as 
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where Γ∞ is the circulation at infinity, T is the constant determined by an initial condition, α is the 

axial velocity gradient and r0 is the specific radius of the vortex. R is the cavitating radius which is 

determined from the radial pressure distribution. In other words, the region where the pressure is 

smaller than the vapor pressure is identified as the cavitating region. The pressure distribution is 

calculated by the balance equation between centrifugal force, pressure gradient and surface tension. 

This dynamic cavitation model provides unsteady behaviors of the vortex cavitation, i.e., development 

of the sub-surface vortex, occurrence of the cavitation at the vortex core, evolution and contraction of 

the cavitating radius. In fact, when the simulation is performed from an initial very weak vortex with 

steady far-field pressure, the vortex develops to be strong enough to make the pressure at the vortex 

core lower than the vapor pressure and then, the cavitating radius grows rapidly with further 

development of the vortex until a terminal steady state. As for the effect of surface tension, the 

velocity distribution is almost the same regardless of the surface tension strength, however, the 

cavitating radius becomes smaller with the increase in the surface tension coefficient. Lastly, the 

simulation is performed with fluctuating far-field pressure. As shown in Figure 1, after the 

development stage of the vortex, the cavitating radius changes in synchronization with the far-field 

pressure fluctuation. From these simulation results, it is shown that the physics of the vortex 

cavitation is represented appropriately by the proposed cavitation model. Therefore, it can be 

concluded that the model has an adequate ability to reproduce the vortex cavitation due to a sub-

surface vortex. 
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Figure 1: Time fluctuation of cavitating radius and far-field pressure. 

 

3     Conclusion and Future Work 
 
The several simulation results show that the proposed dynamic cavitation model provides physically 

appropriate behaviors of the vortex cavitation. This fact implies that the model is developed in a 

proper manner from the N-S equation. As a future work, the model will be incorporated into our 

three-dimensional CFD code which simulates gas-liquid two-phase flows by a high-precision volume-

of-fluid algorithm. Then, the numerical simulations of sub-surface vortices are performed to validate 

the reproducibility of the vortex cavitation by the CFD code. 
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