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Abstract: We study very-high-order conservative discretizations for diffusive
terms with variable viscosity, which are present in the compressible Navier-
Stokes equations, using viscous fluxes at cell-interfaces. We show that the pro-
posed approach yields O(Ax2*) accuracy on the stencil {i — s, -+ ,i,--- ,i + s},
thus improving upon previous proposals which are O(Az?/31) on the same sten-
cil. The extension of the method to 2-D and 3-D regular cartesian grids is de-
scribed. Several typical 1-D and 2-D computational examples substantiate the
accuracy of the method for test problems and for DNS of turbulent flows using
the 3-D compressible Navier-Stokes equations.
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1 Introduction

Very-high-order accuracy is essential in several practical applications such as DNS of compressible
turbulence [3]. Whereas several very-high-order approaches for the discretization of convective
terms have been developed [2], the conservative discretization of the diffusive (viscous) terms has
received less attention. The popular compact scheme of Lele [4] is nonconservative. Zingg et al. [6]
have developed a conservative scheme for the viscous terms on the stencil S; 35 := {i—3,--- ,i+3},
which yields an O(Ax*)-accurate approximation of (u(x) u’ (:C))/, and Shen et al. [5] developed an
alternative O(Ax*)-accurate conservative formulation on the same stencil. It is straightforward to
generalize these apporaches to higher-order using larger stencils, obtaining O(Az?/1) schemes on
the stencil S; 55 := {i — s, ,i + s}. In the present work we develop an O(Az?*) method on the
stencil 8; s s := {i — s, ,i + s}, ie twice more accurate.

2 Present Approach

To discretize (p(x)u’(z)); on a homogeneous grid x := z — 1+ (i — 1) Az we define the numerical flux
F(W/ﬂ-_,s,l_,s)*l on the stencil S; s;_1s :={i —s+1,---,i+ s} satisfying

ta

1 n n s
(/L(:C)U/(I)); = E (F(;Lu’;i,s—l,s)i+% - F(;Lu’;i,s,s—l)ii%) + O(AIQ ) (1a)

Let prar_ . (x; 2, Ax; f) be the Lagrange interpolating polynomial of f : R — R on the stencil
Siv_ v, = {t = M_,--- i+ My} and pg, am_ m, (@525, Ax; f) the corresponding reconstructing
polynomial [1] which approximates the function 4 : R — R, whose cell-averages are equal to f(z)

1
(f(z) = fjf h(z + (Ax)d¢ Vz). Then we can show analytically and verify computationally (Fig. 1)

2

that the required numerical flux is

F(,uu’;i.,sfl,s)pr% ‘= PR;y,5—1,s (xz + %A(E, T, A.I'; [p[,s—l,s(x; X, A.I'; M)p}757175($; L, AiC; f)}) (1b)
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Figure 1: (Left) Error of the present approximation for the computation of (uu')’ as a function
of grid refinement and comparison with previous approaches [5, 6]. (Center) High-Mach-number
Couette flow testcase. (Right) Application to DNS of compressible channel flow.
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The improvement upon previous approaches [5, 6] comes from the fact that we do not reconstruct
fluxes from interpolatory approximations of the product pu’ at half-points, but instead at the inte-
ger points of the stencil. At boundary-points, we use biased stencils recovering global O(Ax2?5~1)
accuracy. The method is extended to 2-D and 3-D using the usual linewise approach [3, 5, 6]. Typi-
cal applications presented in the complete paper include:

1) Nonisothermal flow of glycerol (whose viscosity varies exponentially with temperature 7'

2) Compressible laminar Couette flow (Fig. 1)

3) 2-D diffusion equation

4) DNS computations (Fig. 1).

3 Conclusion and Future Work

The present work defines numerical fluxes for very-high-order conservative discretization of (uu'),
applicable to the viscous terms of the Navier-Stokes equations. Future work includes a least-
squares genuinely multidimensional approach applicable to arbitrary unstructured grids and the
development of WENO discretizations of these terms for flows with discontinuities.
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