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Abstract: The problem of steady-state gravity-driven film flow over topogra-
phy is explored via solutions of the the full Navier-Stokes system of equations.
Besides providing a unique benchmark with which to assess the limitations of
related models based on the long-wave approximation, a defining feature is the
lifting of many of the constraints associated with the latter while in addition
enabling the internal flow topology to be explored as the Reynolds number is
varied.

Keywords: Thin films, free surface flow, finite elements, flow topology

1 Introduction

Investigating the problem of thin film flow over topography, based on the solution of the full
Navier-Stokes (N-S) equations, has over the years been restricted to two-dimensional problems,
due in the main to the computational resource and effort required [1]. To do so, however, over-
comes many of the restrictions associated with simpler models based on the long-wave approx-
imation, removing in one go any constraints, other than physically realisable ones, concerning
choice of capillary number, film thickness or topography aspect ratio; in addition the internal
velocity field forms part of the solution and hence the internal flow topology is revealed.

2 Problem Specification and Method of Solution

The problem of interest consists of a continuous thin liquid film, of asymptotic thickness H0,
flowing down a substrate, containing a trench topography and inclined at an angle θ to the
horizontal, the volumetric flow rate being Q0 per unit width and the characteristic velocity
U0 = 3Q0/2H0. The fluid is considered to be incompressible with constant density, ρ, viscosity,
µ, and surface tension, σ – see [1] or [2].

The strategy adopted to solve the N-S equations governing the three-dimensional flow in-
volves mixed-interpolation using a Bubnov-Galerkin finite element scheme [3], free-surface para-
metrisation based on the Arbitrary Lagrangian-Eulerian method of spines [4], the use of a direct
parallel multifrontal method [5], as contained in the MUMPS library [6], and utilisation of the
memory-efficient out-of-core approach for storing matrix cofactors on the hard drive. The three-
dimensional solutions obtained in this way represent the first of their kind, enabling both the
internal flow topology and free-surface disturbance generated to be explored simultaneously.
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3 Results

Analysing the internal flow topology which arises, reveals that across the trench topography
the three-dimensional thin film flow is topologically different internally from its two-dimensional
counterpart as reported in [1]: whereas for the latter eddy centres are always elliptic points, for
the former, at the mid-plane, they may instead be foci. In addition, the three-dimensional flow
case leads to different flow topologies, dependent not only on the trench geometry but also on
the capillary, Ca = µU0/σ, and Reynolds, Re = µU0H0/ρ, number; Figure 1 is a typical case.
For Re = 0 the trajectories of the flow inside the trench form closed eddies; for Re = 10, the
trajectories encroach into the trench near the left hand symmetry mid-plane (see the blue and
red trajectories) swirl around several times during which they are laterally displaced away from
the mid-plane, they exit the trench close to its (right hand) side before travelling downstream.
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Figure 1: Three-dimensional flow topology, obtained by integrating along path lines, for the
case of a localised rectangular trench topography with nondimensional (scaled with respect to
H0) streamwise length lt = 1.5, spanwise width wt = 3.0, depth s0 = 1.0 and capillary number
Ca = 10

−3; θ = 30
o: Re = 0 (left) and Re = 10 (right). Starting positions are denoted as filled

circles located adjacent to the substrate at z = 0.03 and to the free surface at z = 0.8. For
illustrative purposes different colours are used for streamlines corresponding to different starting
positions. The symmetry mid-plane through the centre of the trench is on the left hand side,
the closed side of the trench is on the right. The arrow shows the direction of flow.
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