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Abstract: In this talk, we will describe consistant numerical methods for
power-law viscoplastic free-surface flows. After describing a shallow-water
asymptotics of a 3D Navier-Stokes-Herschel-Bulkley model with free surface,
we will end up with a model which has various mathematical difficulties. We
will here discuss validity of various approaches to handle optimization prob-
lems arising from the variational inequalities associated to the model, as well
as their coupling with finite-volume discretization. Several numerical tests will
be shown, including a comparison with an analytic solution, to confirm the well
balanced property and the ability to cope with the various rheological regimes
associated with the Herschel-Bulkley constitutive law.
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Problem Statement and Results

We are here interested in the derivation of an integrated Herschel-Bulkley model for shallow
flows, as well as in the design of a numerical algorithm to solve the resulting equations. The
goal being to simulate the evolution of thin sheet of viscoplastic materials on inclined planes and,
in particular, being able to compute the evolution from dynamic to stationary states. Among
numerous models used to describe the rheology of viscoplastic materials, Bingham (linear model
with plasticity, [1]) and Herschel-Bulkley (power law model with plasticity, [2]) models are
probably the most iconic. The Herschel-Bulkley model is expressed as :
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with K the constant consistency, τc the yield stress and |D(u)| is the second invariant of the rate
of strain. This model can be seen as a generalization of the Bingham model which is retrieved
from (1) by taking ℘ = 1. On the one hand, Bingham model is the simplest model when it
comes to describe plasticity. On the other hand, if we take τc = 0 and ℘ < 1, we end up with
the classical power-law (shear-thinning) model. Evidently, if τc = 0 and ℘ = 1, (1) leads to the
classic Navier-Stokes equations. It appears in recent years that to gain insight into the dynamic
behavior of finite volumes of viscoplastic materials down inclined planes, Herschel-Bulkley model
has attracted growing attention both from the experimental and theoretical viewpoints, see for
instance [3] and references therein. Starting from a 3D incompressible fluid modelled by the
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Navier-Stokes equations, together with the Herschel-Bulkley constitutive law (1), and with a
free surface, we introduce its formulation as a variational inequality and derive a shallow water
asymptotic of this system. For sake of brevity (cf. [4] for details), we here give a 1D version
(which nonetheless contains aforementioned difficulties) :
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Figure 1: Stationary states of an academic avalanche for various Herschel-Bulkley fluids.

We design a coupled duality methods / finite volume scheme which fully takes into account
both the threshold of plasticity and the power law. The overall method is well balanced. All these
characteristics lead to a scheme which is able to compute the evolution to stationary solutions
which can arise in these type of flow (thanks to plastic behaviour). It is quite a remarkable feature
of the present approach since many of the numerical methods presented in the literature use a
so called regularization of the constitutive law, skipping the mathematical difficulty induced by
plasticity and making them unable to compute stationary states (the material can not become
rigid). The overall method is able to catch the various rheological behaviours of Herschel-Bulkley
and allows us to tackle practical situations, such as the one presented in [3].
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