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Abstract: In this study, a numerical method for the simulation of compress-
ible two-phase flows is presented. The multiscale approach consists of several
components: a discontinuous Galerkin (DG) solver for the macroscopic scales
of the flow, a micro-scale solver at the interface, a level-set interface tracking
formalism as well as adaptive mesh refinement near the interface. The method
is demonstrated for a droplet at equilibrium described by the Euler equations
including surface tension as well as a shock-droplet interaction without surface
tension.
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1 Introduction

The numerical simulation of compressible multiphase flow introduces additional difficulties com-
pared to the incompressible treatment that is often found in two-phase numerical solvers today.
Two elements are crucial: A method that allows to define the geometry and the temporal evo-
lution of the interface between the two phases (in this study, we employ a level-set method)
as well as a numerical strategy to treat the discontinuous nature of the interface as well as the
related physical processes such as surface tension or phase change. In the compressible case,
this includes different equations of state (EOS) to both sides of the interface. In principle, the
interface region can be approximated by a smooth transition that can be handled by the numer-
ical scheme (diffuse interface approach). As an alternative, we use a sharp interface multiscale
approach, where the numerical scheme only resolves the macroscopic scales of the flow and allows
discontinuous states at the interface position, where jump conditions have to be provided by an
additional solver for the micro-scale. Many micro-scale solvers are conceivable, in the present
study, we rely on Riemann-type solvers [1], [2]. The approach is suitable for general EOS.

2 Sharp-interface multiscale approach

The macro-scale solver for the bulk phases of the flow uses a DG spectral element method
[3], formulated for hexahedral elements. The solution as well as the fluxes are approximated
by a tensor-product basis based on Lagrange Polynomials. Volume and surface integrals are
approximated by Gauss-Legendre-Lobatto quadrature. As no continuity constraint is enforced
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Figure 1: a) Pressure field of a droplet with phase change. Comparison with surface tension
model non-active (left) and active (right). b) Pressure field of a shock-droplet interaction.

between the elements, the flux function at cell boundaries is replaced by a numerical flux. In
the bulk phases, standard Riemann solvers are used. Near the phase interface, the jump in fluid
quantities is assumed to coincide with the nearest element boundary, where the Riemann solver
is replaced by the micro-scale solver (Fig. 1 a). Instead of evaluating a single numerical flux, the
micro-scale solver provides discontinuous fluxes, which are applied on the liquid and gaseous side
respectively. In order to reduce errors related to the discrepancy between the actual interface
(the level-set zero) and the nearest element boundary, an adaptive grid refinement is devised for
elements in a neighborhood of the interface. The scheme allows high orders of accuracy with
subcell resolution, which is particularly valuable for the calculation of interface curvature that
can be obtained from derivation of the ansatz polynomials for the level-set variable. The model
for surface tension is included in the micro-scale solution and takes effect in the macroscale via
the numerical fluxes, thereby eliminating the need for source terms to apply the surface force.

3 Results

We present two 3D test cases to demonstrate the different aspects of the numerical approach.
AMR has not been used in these simulations but will be included in the final paper. The first
test incorporates surface tension: a droplet is initialized in such a way that the higher inside
pressure is at equilibrium with surface tension. The result is obtained for the full Euler equations
with Tait and ideal gas EOS. Fig. 1 b) compares the equilibrium state with surface tension and
a non-equilibrium state without it (100 iterations). Diameter and shape remain constant, the
pressure jump is kept sharp, while fluctuations near the interface are well-controlled. The second
test (Fig. 1 ¢) is a shock-droplet interaction. The interface remains smooth despite the staircase
pattern of the interface aligned with the element boundaries. The effect of a higher propagation
speed inside the droplet and wave reflection on the interface can be observed.
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