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A discontinuous numerical perturbation algorithm, i.e. discontinuous small parameter ex-
pansion algorithm is presented in this paper. This algorithm is applied to reconstruct finite
difference (FD) and finite volume (FV) schemes for the convective-diffusion (CD) equation. As
an example, the CD integral equation and its second-order center FV scheme (call it 2CVS) can
be written as,
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repectively. Where S is the surface enclosing control volume (CV), 77 is the unit vector orthogonal
to S and directed outwards, w is the fluid velovity, p is the density, u is the diffusion coefficient,
¢ represents any transported variable, ¢, is the value of ¢ at the CV center (node p), ¢;, is
the value of ¢ at the adjacent CV center (node jp). A typical cell face labeled "jf" (See Fig.
1) is analyzed, j = 1,2,--- ,J. ¢; is the value of ¢ at the cell jf-face center, §j is the aera
vector of the cell jf-face and its direction agrees with 73, d; is the vector linking node p and
node jp with the direction from p to jp, d; = |J;|, m; s is the mass flux through the cell j f-face,
mys = pUg,Sj, U, is the fluid velocity component in the local coordinate direction 5]

The procedure of discontinuous numerical perturbation is that the scheme (1) is split spatially
into J schemes and its j-th scheme (j = 1,2,---,J) is split into upstream scheme for the
node p (if Ug, > 0) and downstream scheme for the node jp and then mj; is reconstructed
discontinuously as Gj_mj ¢ in upstream scheme and G;rmj ¢ in downstream scheme, respectively,
and then we have
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where Gf = 1+ Y0 at(6;d;)", G; = 1+ 30 a;(1 - 6,)"d}, G} and G; are called

Figure 1: CV center (node p) and adjacent CV center (node jp) and local coordinate.



perturbational reconstruction functions. The coefficients a,} and a,, are obtained by eliminating
truncation error terms including in the modified differential equation of the scheme (2) and have
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where Ry, = pU¢,;d;/p can be regarded as the cell (or grid) Reynolds number. The FV scheme
(call it discontinuous perturbation FV scheme, DPVS) obtained by discontinuous numerical
perturbation reconstruction is
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The present DPVS (4) has the same structure and simplicity as the original 2CVS. Analysis
shows that, if N is an odd number and 53— 7 <05 < 2%111 , the DPVS (4) are absolute positive
schemes for any value of Ry, and its mterpolatlon approximate accuracy is (n + 2)-order. In
other cases the DPVS (4) are conditional positive schemes, i.e. conditional stability schemes.
Numerical tests solving one- to three-dimensional linear CD equations, one and two dimensional
Burgers equations show that the averaged errors of the present DPVS (4) are much smaller
than those of the second-order center FV scheme (2CVS) in all tested cases, and the present
DPVS (4) with odd number order accurate do not yield oscillatory solution, while 2CVS and the
DPVS (4) with even number order accurate oscillate in coarse grid cases. The averaged errors of
the present DPVS (4) are also smaller than those of WENO and Discontinuous Galerkin (DG)
schemes if all three schemes have the same accuracy order.

Similarly, some higher-order accuracy, absolute stability center finite difference schemes (call
them discontinuous perturbation finite difference schemes, DPDS) are also obtained by discon-
tinuous perturbation reconstructing the second-order accurate center FD scheme (2CDS) for the
convective diffusion equation. DPDS’s excellent properties are verified by analysis and numeri-
cal tests. As an example, Table 1 gives the maximum errors L., and averaged errors L, of the
second-order central difference scheme (2CDS), the third order DPDS (3DPDS) and the fifth
order WENO scheme (5WENO) solving the linear transport equation and Burgers equation,
respectively. It should be mentioned that 3DPDS is a central scheme using only three nodes,
has the same structure and simplicity as 2CDS, and does not need artificial viscosity or limiter,
while 5SWENO is an upstream scheme using seven nodes and requires weight functions.

Table 1: Comparison of different schemes

N 2CDS 3DPDS SWENO
L Ly L Ly L Ly

160 — —- 0.6940e+0 | 0.4872e-2 | 0.2631e+1 | 0.2034e-1

Linear | 320 | 0.4141e+0 | 0.1861e-2 | 0.1487e-1 | 0.7443e-4 | 0.3559e+0 | 0.1960e-2
640 | 0.4288e-1 | 0.2196e-3 | 0.4190e-3 | 0.2224e-5 | 0.3964e-1 | 0.2177e-3

1280 | 0.6930e-2 | 0.3746e-4 | 0.1751le-4 | 0.9516e-7 | 0.6983e-2 | 0.3815e-4

160 — — 0.1213e+0 | 0.1779e-2 | 0.1205e+0 | 0.1646e-2

Burgers | 320 — — 0.4251e-2 | 0.4158e-4 | 0.1166e+0 | 0.9521e-3
640 | 0.1278e+0 | 0.6278e-3 | 0.4036e-1 | 0.1780e-3 | 0.2749e-1 | 0.2172e-3

1280 | 0.2440e-1 | 0.1442e-3 | 0.9744e-2 | 0.5011e-4 | 0.3633e-2 | 0.2952e-4




