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Abstract: The Euler equations consist of two acoustic waves (u± c), contact
and shear waves moving at the speed of (u). The acoustic waves are an es-
sential ingredient in compressible flows, but trivial in low Mach number flows.
However, most of the upwind schemes treats these waves in the same fashion.
In this paper, we propose a method to separate the acoustic waves from the
advection waves, resulting in a simple and unique Riemann solver. It is of
great advantage for the two-step method to allow different solution-strategies
for each step.
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Consider the one-dimensional system of conservation laws for any fluids,

Ut + Fx = 0, (1)

where U, F are vectors of conservative quantities and fluxes. The flux vector can be written as

F = uU + P, (2)

where P = (0, p, pu)T . For the numerical solution of (1), we shall consider a conservative scheme

ΩiUn+1
i = ΩiUn

i − Δt(F∗
i+1/2 − F∗

i−1/2), (3)

where Δt and Ωi is the time step and the cell volume respectively. Conservative schemes are
different at the way to define flux vector F∗. In this paper, a two-step method is used to
approximate it.

In the first step, we consider a fluid particle occupies cell i bounded by two faces i+1/2 and
i − 1/2. The conservative quantities of this particle satisfies

Ω̃iŨi = ΩiUn
i − Δt(P∗

i+1/2 − P∗
i−1/2), (4)

where the tilded variables represent the updated states of the particle, or the solutions in the
Lagrangian frame. Notice that the flux vector is P instead of F. Because of the motion of the
particle, it has been advected away from the original Eulerian cell shown in Fig.1. In the second
step, the conservative quantities in the Eulerian cell i is found by remapping the Lagrangian
solution. Suppose the solution is piecewise constant, conservative quantities, ΩiUn+1

i , is the

1



sum of two portions, AB and BC, as shown in Fig.1,

ΩiUn+1
i = (u∗

i−1/2Δt)Ũi−1 + (Ω̃i − u∗
i+1/2Δt)Ũi. (5)

Substituting (4) into (5), we get

ΩiUn+1
i = ΩiUn

i − Δt(Ũiu
∗
i+1/2 + P∗

i+1/2 − Ũi−1u
∗
i−1/2 − P∗

i−1/2). (6)

Now, it is clear that the two-step procedure leads to flux vector,

F∗ = U∗
i+1/2u

∗
i+1/2 + P∗

i+1/2, (7)

where

U∗
i+1/2 =

{
Ũi for u∗

i+1/2 ≥ 0,
Ũi+1 for u∗

i+1/2 < 0.
(8)

The flux vector relies solely on the estimate of velocity and pressure at interfaces, which is much
simpler than most Riemann solver that can resolve a stationary contact. We adopt the linear
acoustic solution for the velocity and pressure. If the piecewise linear distribution is assumed
instead, similarly to the MUSCL method, the two-step method can be readily extended to
second-order accuracy. Fig. 2 gives the first-order and the second-order results of the Sod’s
shock tube problem. More details will be reported in full paper.

Figure 1: Construction of the two-step Riemann solver

(a)
0

0.2

0.4

0.6

0.8

1

0.0 0.3 0.5 0.8 1.0

EXACT
Godunov, 1st order
Two-step, 1st order

x

D
en

si
ty

(b)
0

0.2

0.4

0.6

0.8

1

0.0 0.3 0.5 0.8 1.0

EXACT
Godunov, 2nd order
Two-step, 2nd order

x

D
en

si
ty

Figure 2: Shock tube problem: (a) first order scheme, (b) second-order scheme. The two-step
Riemann solver is compared with the exact Godunov solver.
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