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Abstract: The correction procedure via reconstruction (CPR) formulation for the Euler
and Navier-Stokes equations is implemented on a graphics processing unit (GPU) with both
explicit and implicit time-stepping schemes. For the implicit time integration, a modified
non-linear lower-upper symmetric Gauss-Seidel (LU-SGS) approach is implemented and
for the explicit time-stepping a 3-stage Runge-Kutta scheme is used. A speed-up factor of
up to two orders of magnitude has been demonstrated.
b
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1 Introduction
Over the past few years GPU computing has become widespread in the CFD community. Adap-
tive high-order methods are scalable and local, and are ideal suited for the GPU architecture.
Most of the previous studies used explicit time integration and single precision floating point
operations. The present study introduces an implicit LU-SGS scheme for steady state problems
on GPUs and calculations with double precision floating point operations. The CPR method [1]
is used to solve the Euler and Navier-Stokes equations on 2D unstructured triangular grids.

2 Implicit Time Stepping on a GPU
The equation for the implicit LU-SGS scheme [2] for steady state problems can be written as
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where I is the identity matrix, ∆t the current time step, Resi the residual vector for cell i, Qi

the solution vector for cell i, w a iteration index and superscript ∗ stands for the most recent
updated solution. The cell matrix Di = ∂Resi/∂Qi can be computed numerical as showed in
Ref. [2]. For a CPU version, Eq. (1) can be solved with a symmetric forward and backward
sweep over all cells. For the GPU version however the equation is modified in the following way
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where subscript nb stands for neighboring cells of cell i. Cell coloring is employed to parallelize
the LU-SGS algorithm on GPUs. With the Four Color Theorem[3] an unstructured mesh (which
can be transformed into a planar graph or map) can be colored with at most four colors in a
way that no neighboring cells sharing the same color. By doing this, cells with the same color
can be updated in parallel on a GPU, independently from other colors.
blaIntroducing four colors red,yellow,blue and green, the symmetric forward and backward sweep
can be written together as

Red → Yellow → Blue → Green → Green → Blue → Yellow → Red.

A four colored mesh can be seen in Fig. 1.

Figure 1: 2D triangular mesh colored with four colors (994 cells: 313 Red, 257 Yellow, 252 Blue
and 172 Green)

3 Results
For polynomial degrees k = 1− 5, the maximum speed-ups for the implementations are shown
in Fig. 2. The calculations on the GPU are carried out with double precision floating point
operation on one NVIDIA R© Tesla

TM

C2050 and are compared to a similar code on one core
of a Intel R© Xeon R© CPU (X5650@2.67GHz) running the same simulations. For the explicit
scheme over two orders of magnitude speed-up has been achieved, while for the implicit scheme
a speed-up factor up to 89 has been obtained.

Figure 2: Maximum Speed Up for Explicit and Implicit Time Stepping Schemes
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