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Abstract: Two new methods are developed for convergence error estimation 
and convergence acceleration in iteratively solved problems. The 
convergence error estimation method is based on the eigenvalue analysis of 
linear systems, but it can also be used for nonlinear systems. The 
convergence of iterative method is accelerated by subtracting convergence 
error from the iteratively calculated solutions. The performances of these 
methods are demonstrated for the Navier-Stokes equations. 
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1     Introduction 
 
There is a great interest in estimating the convergence error. Knowing when to stop iteration is 
important in terms of computational efficiency and accuracy. In most of the iteratively solved 
problems, the reduction in residual is used as a stopping criterion. Unfortunately, the reduction in 
residual may not be a reliable measure for the convergence error. Different methods were developed 
to estimate the convergence error.  Ferziger and Peric [1,2] used eigenvalue analysis of linear systems 
in convergence error estimations. In this study, the convergence error vector is expressed as the 
linear combination of the correction vectors [3]. The coefficients of the correction vectors are 
calculated using the least-squares minimization. Once knowing how to estimate the convergence 
error, the next step is to develop a convergence acceleration method. In literature, there is almost no 
research on convergence acceleration based on the convergence error estimation. The convergence 
acceleration method presented in this study is based on the estimation of the exact solution. 

 

2     Problem Statement 
 
Using the eigenvalue analysis of linear systems, the following method is developed [3].  In this 
method, the convergence error vector, ε, at iteration n+1, is calculated as: 
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In the equation above, Meigen is the number of eigenvalues. The coefficients Cm's are real numbers and 
they are determined from the least squares solution of the following equation. 
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In the calculation of these coefficients, the correction vectors, δ, from the present and last 2Meigen 
iterations must be stored. Although, increasing the number of eigenvalues may improve the accuracy 
of convergence error estimation, this improvement may also cause an increase in the memory 
requirement to store correction vectors from previous iterations. 



Once the convergence error is determined, the exact solution, w, which exactly satisfies the 
discretized governing equations, can be estimated.  The convergence can be accelerated by 
subtracting convergence error from the iterative solution, nw% .  

ε= −%
n nw w  (3) 

The performances of the convergence error estimation and convergence acceleration methods are 
tested in the solution of Navier-Stokes equations. The flow around the NACA0012 airfoil is solved at 
a transonic flow condition (M=0.730, α=2.78o, Re=6.5x106).  In the solution of equations, four-stage 
Runga-Kutta scheme, local time stepping and four level multigrid method are implemented. Figure 1 
shows the accuracy of the convergence error estimation method for a CFL number of 1.5. The results 
show that the proposed method can accurately estimate the convergence error, however, the residual 
may not be a good parameter to predict the convergence error. Figure 2 shows the performance of the 
convergence acceleration method with a maximum CFL number of 1.9. If no convergence 
acceleration method is used, the norm value of residual is reduced to the order of machine epsilon in 
20,000 iterations. If 16 eigenvalues are used in the convergence acceleration method, the residual can 
be reduced to the same level in 3000 iterations. Similarly if the number of eigenvalues is increased to 
256, the same convergence level can be achieved in 2500 iterations.   
 
 
 
 

 
 
 
 
 
 
 
 
 

 

  

Figure 1. Convergence error estimation Figure 2. Convergence acceleration 

 
3     Conclusion and Future Work 
 
Two new methods are developed. In the first method, the convergence error is estimated in iteratively 
solved problems. The method is based on the eigenvalue analysis of linear systems. In the second 
method, the convergence of an iterative method is accelerated by estimating the exact 
solution. The performances of these methods are demonstrated in the solution of Navier-Stokes 
equations.  The results show that the convergence error can be accurately estimated with the 
developed method. The residual itself, on the other hand, is not considered to be a reliable parameter 
to predict the convergence error. The proposed convergence acceleration method reduces the number 
of iterations. More results will be included in the full paper. 
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