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Abstract: We study high-order (up to O(∆ℓ12)) least-squares reconstruction,

both linear and WENO, on arbitrary unstructured grids. The order-of-accuracy of

the schemes is evaluated on different types of unstructured grids by calculating

the error of the solution of the advection equation with different orientations of

the advection-velocity-vector. The strategy for building the reconstruction sten-

cils and the WENO substencils is discussed in detail. The spectral accuracy of

the reconstruction procedure is studied analytically for several regular unstruc-

tured grids. Finally, the WENO schemes are evaluated for several testcases for

the Euler equations of gasdynamics.
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1 Introduction
The relative advantages of cell-centered and vertex-centered finite-volume (FVs) schemes [5] are

best understood, especially for high-order schemes, as the comparison of the relative performance

of high-degree polynomial least-squares approximations [6] on different control volumes, rela-

tive to Delauney triangulations [2] or Voronoi tesselations [2] or some other connectivity between

points [1]. We study in the present paper the performance of very-high-order least-squares recon-

struction on different types of general polygonal grids.

2 Present Approach
As an example, consider linear (in the sense of Godunov’s theorem [7]) least-squares schemes [6]

for the 2-D advection equation on a square domain (Fig. 1). The points of a regular Cartesian

grid can be triangulated in different ways (Fig. 1), and the dual-grids composed by the control-

volumes constructed by joining the barycenters of the cells around each vertex are general polygo-

nal grids (Fig. 1), while the dual of a basic quasi-Delauney triangulation with equilateral triangles

is a quasi-Voronoi tesselation of the square (Fig. 1). The solution of the 2-D advection equation

on progressively refined grids of each type, using polynomial least-squares reconstruction of dif-

ferent orders (polynomial degree), with various strategies for stencil-construction (face-neighbours

or vertex-neighbours) and least-squares weighting (distance-weighted or unweighted), and for dif-

ferent orientations of the advection-velocity-vector, is compared with the exact solution (Fig. 1).

The results are then correlated with different widely used measures of grid-quality. We then study

nonlinear WENO schemes, up to O(∆ℓ12), for the same problems. We study in particular systematic

strategies for the construction of the substencils.

For regular unstructured grids (Fig. 1) it is possible to obtain analytical expressions of the

reconstructing polynomial coefficients, and compute exactly, using symbolic calculation, the fluxes

at the Gauss integration points on the cell-faces. We have used this approach to study the spectral

accuracy of least-squares-reconstruction discretizations of the advection equation, and compare

with the results obtained by the aforementioned numerical experimentation.
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Figure 1: Examples of different triangular and general polygonal grids (dual to the triagular) and

order-of-accuracy studies for the 2-D advection equation (with linear SSPRK time-integration of the

corresponding order [4]).

Finally, this procedure is extended to the Euler equations of gasdynamics, using characteristic

variables reconstruction and an exact Riemann solver [3], and applied to standard test-problems.

3 Conclusion and Future Work
In the present work we studied the order-of-accuracy and the spectral accuracy of linear and WENO

schemes on general unstructured meshes, and tested very-high-order unstructured WENO schemes

for the Euler equations, lowering the order-of-accuracy at nonperiodic boundaries. Ongoing work

concentrates on very-high-order-accurate WENO schemes on general unstructured meshes, using

biased high-order stencils at the boundaries.
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