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Abstract: New explicit Runge-Kutta methods are presented for time inte-
gration of the incompressible Navier-Stokes equations. These methods are
high-order accurate for both velocity and pressure, even when the boundary
conditions or the mesh are time-dependent. Computations for an actuator disk
in a time-dependent inflow support the correctness of the analytically derived
methods.
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1 Introduction

Time integration of the incompressible Navier-Stokes equations with Runge-Kutta methods is
not straightforward due to the differential-algebraic nature of the equations. In this work we
investigate the temporal order of accuracy of velocity and pressure when explicit Runge-Kutta
methods are applied to the incompressible Navier-Stokes equations.

It turns out that both velocity and pressure can be computed to the classical (‘ODE’) order
of accuracy, except in two important cases [1]. First, if the boundary conditions for the normal
velocity component depend on time, the order of accuracy of the pressure is affected. Second, if
the mesh is time-dependent, the order of accuracy of both velocity and pressure is affected. We
propose a number of new methods for these cases that are third- and fourth-order for the velocity
and second order for the pressure. The second-order accuracy of the pressure is obtained with
a new technique based on reconstruction of instantaneous pressure values from time-averaged
values.

2 Computational results

To illustrate the effect of time-dependent boundary conditions, we compute the laminar flow
through an actuator disk with unsteady inflow conditions. This is a simplified model of a wind
turbine experiencing a time-varying wind field. The inflow conditions are given by uinflow(t) =
cosα(t), vinflow(t) = sinα(t), where α(t) = π

6
sin(t/2), i.e., an inflow with constant magnitude

but changing direction.
The flow field at t = 4π is shown in figure 1. The temporal error in velocity and pressure is

computed by subtracting the flow field obtained from a simulation with very small time step. The
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resulting convergence of the velocity and pressure errors is shown in figure 2, for methods with
three (S3) and four (S4) stages. The velocity attains its classical third-order accuracy for the
three-stage (S3) method, and fourth-order for the four-stage (S4) method. Without appropriate
measures the pressure is only first-order accurate (S3p1). With our new method the pressure
is second accurate (S3p2 and S4p2). Note that in principle the pressure can be computed to
the same order as the velocity if an additional Poisson solve is performed and if the boundary
conditions are differentiable in time. Our approach does not require any significant additional
computational effort or differentiability of boundary conditions, is second-order accurate and
starts with a small error already at the largest time step considered.
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Figure 1: Flow through an actuator disk. Streamlines and u-contour lines at t = 4π.
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Figure 2: Velocity and pressure error at t = 4π for a three- and four-stage Runge-Kutta method.
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