
Wall Distance Search Algorithm Using Rasterized

Marching Spheres

Beatrice Roget ∗ 1 and Jayanarayanan Sitaraman †1

1Department of Mechanical Engineering, University of Wyoming, Laramie, WY

1 Introduction, Objective and Methodology

Minimum distance to a solid wall is a primary parameter that is utilized in most turbulence models - e.g in the
commonly used Spalart-Allmaras turbulence model, the turbulence destruction source term is inversely proportional
to the square of the wall distance d. For a grid with Nf field points and Nb boundary faces, the direct exhaustive
computation of wall distances are of O(Nf × Nb), which is quite expensive for grids utilized in the state-of-the-
art RANS based CFD calculations (where Nb is of order hundred thousand and Nf is of order several million).
Therefore, several efficiency improvement algorithms have been devised to compute the wall distance. They can be
characterized in to three groups:

1. k − d tree based search approaches [1, 2, 3], which is an adaptation of the classic nearest-neighbor search.

2. Differential equation based approaches [4, 5]

3. Advancing surface front type methods [6]

In a parallel computing environment, all of the above approaches suffer from scalability and accuracy issues. The
k − d tree approach constructs a digital tree of the boundary faces and follows a divide-and-conquer algorithm by
eliminating regions that do not intersect with the sphere corresponding to the “current best” minimum distance. This
is a quite efficient approach for points that lie close to the boundary surface. However as points are further away from
the surface, lesser number of regions and hence branches of trees can be eliminated from comprehensive checking
leading to poor scalability - because grid partitions lying further from the surface will incur more computations
compared to those that lie closer to the surface. In contrast, the differential equation based approaches (Poisson,
Eikonal) are quite scalable and much easier to implement as parallel algorithms. However, the accuracy of the wall
distances are driven by the order of accuracy of the discrete approximation (of the governing PDE) as well as the
level of convergence obtained. True minimum distance can be achieved only in the limit of zero grid spacing and
machine-zero convergence. Advancing front methods have inherent defects in scalability as processes controlling
partitions further away have to wait idle until the front approaches them after passing through closer partitions. In
summary k − d tree approaches can provide the true-estimate of the wall distance, but are not scalable. Differential
equation based approaches are scalable, but only provide approximate estimate of the wall distance and advancing
surface front type methods are neither scalable nor accurate.

The objective of this work is to explore a different algorithm, still based on searching rather than differential
equations, that is capable of mitigating the scalability and accuracy issues mentioned above. In contrast to k − d
trees, we utilize a structured auxiliary mesh (SAM) for facilitating divide-and-conquer. We summarize the major
steps of the algorithm below:

1. Preprocessing:

(a) Build SAM: SAM can be built by just constructing an oriented bounding box of the boundary faces and
equally dividing it in each of the coordinate direction using a suitable metric based on the statistic of the
boundary face size - e.g. size of a cell in SAM can be equal to 10 times the length of the mean boundary
face size

∗Senior Research Scientist
†Asssistant Professor

1

(b) Populate SAM: the boundary face list is traversed linearly tagging all the cells of the SAM that intersect
them - this is a very simple computation owing to the Cartesian nature of the SAM. At the end of this
step, each cell of the SAM will have information of all the boundary faces that have overlap with it.

2. Search : For any given field point, first locate the closest point in SAM and construct an expanding spherical
front using a rasterized representation. The concept of rasterization is borrowed from computer graphics and is
weakly equivalent to a 3-D extension of the Bresenham’s circle drawing algorithm. It is worth noting that only
integer arithmetic is needed for constructing rasterized spheres. Once the expanding spherical front touches
cells of SAM that contain boundary faces, a comprehensive check is performed on all these boundary faces to
achieve the true minimum distance.

A graphical description of the algorithm described above is shown in Figure 1.

Structured Auxiliary Mesh

Oriented Bounding Box Closest Sub-Block

Surface Mesh

Query point

inside OBB Query point

outside OBB

Closest

surface points

(a)

First 1/8 circle computed using

mid-point circle algorithm

mid-point circle algorithm

repeated to obtain

each sphere slice

Remaining 7/8 built

by symmetry

Discretized sphere

(b)

Figure 1: (a) Oriented bounding box, structured auxiliary mesh and expanding sphere (b) Rasterized sphere gener-
ation

The key advantage of this algorithm compared to the k − d tree approach lies in the amount of spatial elimination
that can be achieved. Owing to the spherical marching, even for field points that are further away, the number of
boundary faces that need to be comprehensively checked are comparable to those for field points that lie closer- e.g.
in the limit of a field point lying infinitely far away, the k− d tree degenerates to an exhaustive comprehensive check
of all the boundary faces, while the spherical marching will still eliminate a significant group of bounding faces from
being comprehensively checked. Furthermore, the algorithm described above is completely grid agnostic (i.e. does
not require description of the underlying volume grid as in the case of differential equation based and advancing front
approaches) and hence very modular.

2 Preliminary Results and Projection for Final Paper

In Figure 2 we show timing results of the wall distance calculation for a DLR-F6 geometry. Results are encouraging
with about two orders of magnitude in speedup obtained when compared with the exhaustive search. For the final
paper, we expect to demonstrate and report the following:

1. Complete description of all facets of the algorithm with underlying mathematical framework and data struc-
turing. Extension of the approach to fully parallel computations.

2. Demonstration of parallel scalability of the algorithm - with the field points partitioned and the boundary
surface maintained unsplit in all processes

3. Demonstration of parallel scalability of the algorithm - with both the field points and the boundary surface
partitioned among processes.

2

150996 147760 150054 154278 143406

Number of query points:

Time to compute wall distance (sec)

Exhaustive 300

Number of boundary faces: 49901

boundary nodes: 25104

Partition 1 Partition 2 Partition 3 Partition 4 Partition 5

Exhaustive

search

Present

method

100

200

300

Figure 2: Comparison of exhaustive search and the spherical marching algorithm for 5 grid partitions of the DLR-F6
geometry.

References

[1] van der Weide, E., Kalitzin, G., Schluter, J., Alonso, J.J., “Unsteady Turbomachinery Computations Using
Massively Parallel Platforms,” 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2006-0421,
Reno, NV, January 2006.

[2] Boger, A., D. “Efficient Method For Calculating Wall Proximity,” AIAA Journal, vol. 39, no. 12 (2404-2406),
2001.

[3] Sethian, J., A, “Fast Marching Methods”, SIAM review, 41(2), 199-235 (1999)

[4] Tucker, P. G., “Differential Equation Based Wall Distance Computation For DES/RANS”, Journal of Compu-
tational Physics, 190(2003), 229-248.

[5] Xu, J., Yan, C., Fan, J., “Computations of wall distances by solving a transport equation,” Appl. Math. Mech,
32(2), 141-150 (2011).

[6] Lohner, R., Sharov, D., Luo, H. and Ramamurthi, R., “Overlapping Unstructured Grids,” AIAA 2001-0439,
Reno, NV, January 2001.

3

