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Abstract: A general comprehensive strategy is presented for the
design, verification, and implementation of boundary conditions for
finite volume schemes. We incorporate boundary conditions through
reconstructed states used in numerical flux formulae at the bound-
ary. A novel aspect of this work is the application of manufactured
solutions directly at the boundary equations to verify accuracy.
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1 Introduction

The1 objective of this paper is to establish a general design methodology for the implementation
and verification of boundary conditions for finite volume (FV) schemes. Unlike finite element
approaches [1], a rigorous framework for FV boundary treatments has proven elusive since the
boundary conditions do not completely specify the boundary states. As a consequence, various
ad hoc methods have appeared in the literature [2]. In this work, three simple criteria are
used to define suitable boundary conditions: (1) physical consistency, (2) discrete conservation
throughout the entire domain interior, and (3) preservation of the order of accuracy. We describe
a new general approach for the implementation of FV boundary conditions through reconstructed
states of a numerical flux. Importantly, we present a novel approach for the verification of these
boundary conditions using the method of manufactured solutions (MMS). For the final paper,
we will present practical demonstrations to validate our approach.

2 Boundary Condition Approach and Verification

The boundary condition strategy is illustrated in Figure 1(a). At interior degrees of freedom we
solve the governing PDEs. At domain boundaries, we place new boundary degrees of freedom
(BDOF) at the quadrature points of boundary cells (the shaded dot in Figure 1(a)). At these
locations we define a new set of equations governing the boundary conditions. These equations
involve physically relevant combinations of Dirichlet, Neumann, characteristic, or the equations
of motion themselves, and may be expressed as Ω(Q) = 0. For example, at a no slip constant
temperature wall, a logical choice is Ω(Q) = [∂p/∂n u v T − Twall]

T , where n is the wall
normal, and Twall is a specified temperature. By placing the BDOFs at cell quadrature points,
we use these values directly as inputs to numerical flux formulae involving reconstructed states,
as in Fi−1/2 = 1/2[F (QR) + F (QBDOF )] − |A|/2(QR − QBDOF ) This automatically enforces
upwinding and satisfies discrete conservation for interior cells.
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Figure 1: Boundary condition implementation and verification.

This method is verified using MMS, which we previously used to determine the accuracy of
interior discretizations [4]. Here, we extend the MMS procedure to apply directly at the BDOF
locations as well. This is different from the procedure of Choudhary et al. [3] in which MMS
solutions are devised which must satisfy given boundary conditions. Our procedure results in
a modified boundary equation, Ω(Q) = Sb(x), where Sb accounts for the fact that arbitrary
manufactured solutions do not satisfy the boundary conditions generally. The advantage of
using MMS on the boundaries is that we can directly assess the accuracy at boundaries as well
as the interior scheme without taking great pains to concoct solutions which already satisfy the
boundary conditions. An example result of this procedure for the no-slip wall condition above
is shown in Figure 1(b), showing second order accuracy.

3 Future Work

For the final paper, detailed descriptions of a variety of boundary conditions will be presented,
along with implementation details and verification results. We will include inflow, outflow, fixed
mass flux, extrapolation, constant pressure, characteristic, and inviscid/viscous wall treatments.
Detailed MMS refinement studies will be performed for these boundary conditions. Additionally,
2D validation cases will be performed to assess physical accuracy, including Ringleb flow, a
Blasius boundary layer, and steady inviscid and viscous circular cylinder and airfoils.
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