Plenary Lecture | Plenary lecture **Plenary lecture V** Fri. Jul 19, 2024 9:15 AM - 10:15 AM Room A

[P5-01] Introduction, history, and applications of all speed Riemann flux schemes

*Eiji Shima¹ (1. JAXA)

Keywords: scheme, all-speed Riemann flux, JAXA's research

 Dathing ackground and overview Background and overview Introduction of JAXA and the applications of SLAU type schemes in JAXA's research projects History and theories of SLAU type scheme History and theories of SLAU type scheme Toward the SLAU type schemes Toward	Overview The theories of the SLAU type schemes are presented along the history of progress from my point of view. I will emphasize the physical images of the schemes. It was helpful to improve the schemes at JAXA are shown for illustrating the use of SLAU type schemes and JAXA are shown for illustrating the use of SLAU type schemes and areodynamic researches. There are many other applications those don't use these schemes, of course.) Note that the simplified history I will talk about is not a whole history. There has been many excellent researches in this field, e.g. preconditioning methods, that I can't mention.
Introduction, history, and applications of all-speed Riemann flux schemes Eij SHIM Brins Aeroantical Technology Department Japan Aerospace Exploration Agency (JAXA)	 Background As all real fluids are compressible, the compressible Navier-Stokes equation is theoretically a governing equation for flows at all Ma(Mach number) and sound propagation, however, there were problems to apply to the low Ma flows. The Godunov-type CFD schemes for compressible flows, in which the Riemann flux function computes the flux at the cell interface, are fundamental for modern high-resolution CFD methods used as the workhouse for the aerospace engineering. Recent advancements in the all-speed Riemann flux functions make it possible to compute flows in a broad range of Ma and to cover most aerospace applications. LAU(Simple Low Dissipative Advection Upstream Splitting Method) type schemes we have developed are widely used as the all-speed Riemann flux scheme due to their robustness, simplicity and versatility.

Common Form of AUSM type schemes	Two origins of the approximate Riemann Fluxes:
Flux of the Euler equation in 3-D FVM form can be written as:	FDS and FVS
$\begin{aligned} \hat{\mathbf{F}} = \hat{m} \mathbf{\Phi} + \rho_{N} & \Phi = \begin{pmatrix} 1 \\ y \\ y \\ y \end{pmatrix} & \mu = \rho_{L} & \mu = \rho_{L} \\ \text{mass flux} & \text{Total Enthalpy} \\ \text{Concentration} & \text{Face normal} \\ \text{The flux of AUSM(Liou/MS., Steffen Jr., C.J., 1993) type schemes is close to the definition of the Euler flux. \\ \hat{\mathbf{F}} = \frac{\hat{m} + \dot{\mu} - \dot{\mu} \mathbf{I}}{2} \Phi_{n} + \dot{p}N \\ \text{The mass Flux in and the interface pressure \tilde{p} are everything for the AUSM type scheme. It will show how schemes were made. \end{aligned}$	$\begin{array}{c} CIR \qquad \tilde{E} = \frac{1}{2} \{AQ\}_{k} + AQ\}_{k} - A (Q_{k} - Q_{k})\} \\ E = \frac{1}{2} \{E_{k} + E_{k} - A (Q_{k} - Q_{k})\} \\ E = \frac{1}{2} \{E_{k} + E_{k} - A (Q_{k} - Q_{k})\} \\ E = \frac{1}{2} \{E_{k} + E_{k} - A (Q_{k} - Q_{k})\} \\ E = \frac{1}{2} \{E_{k} + E_{k} - A (Q_{k} - Q_{k})\} \\ E = \frac{1}{2} \{E_{k} + E_{k} - A (Q_{k} - Q_{k})\} \\ E = \frac{1}{2} \{E_{k} + E_{k} - A (Q_{k} - Q_{k})\} \\ E = \frac{1}{2} \{E_{k} + E_{k} - A (Q_{k} - Q_{k})\} \\ E = \frac{1}{2} \{E_{k} + E_{k} - A (Q_{k} - Q_{k})\} \\ E = A_{k}^{T} (Q_{k} + A_{k}^{T} Q_{k}) \\ E = A_{k}^{T} (Q_{k} + A_{k}^{T} Q_{$
100 Theories Toward the AUSM type Schemes T	The Godunov scheme is the 1 st order upwind difference for the Euler Equation. The Godunov scheme is the 1 st order upwind difference for the Euler Equation. There we think about the spatially one-dimensional linear hyperbolic system. $Q_{i} + AQ_{i} = 0$ $Q_{i} + AQ_{i} = 0$ The Scheme which is 1 st order upwind scheme can be written in the FVM form. $Q^{sti} = Q^{s} - \frac{\Delta t}{\Delta t} (\tilde{\mathbf{E}}_{i+12} - \tilde{\mathbf{E}}_{i+12})$ $\tilde{\mathbf{E}}_{i+12} = \frac{1}{2} \{ AQ_{i} + (AQ_{i+1} - \mathbf{A} Q_{i+1} - Q_{i}) \}$ Here we use the following orthogonal transformation.

Determined of FVS (Handle Schwane,1989) Challenge : Preservation of total enthalpy which is crucial in high Ma flows The VL-FVS can be rewritten to separate contributions of advection and pressure. $\mathbf{w}_{\mathbf{n}} \in \mathbf{\Phi}_{\mathbf{n}} + \hat{\mathbf{n}}^{*} \oplus \mathbf{n}^{*} \oplus n$	From Fix of the AUSA Challenge: Accuracy for contact surfaces and viscous flows Challenge: Accuracy for contact surfaces and viscous flows Challenge: Accuracy for contact surfaces and viscous flows AUSM is well known, however, here we explain using the concept of SFS(Simplified Flux Vector Splitting).(Jounouchi, T. et al 1991) Hanel F VS can be written as follows. $m_{inell} \tilde{\mathbf{E}} = _{ij} \tilde{m}_{ij}^{*} \Phi_{i} + _{ij} \tilde{\mathbf{m}} \Phi_{i} + \tilde{p} \mathbb{N}$ $m_{inell} \tilde{\mathbf{E}} = _{ij} \tilde{m}_{ij}^{*} \Phi_{i} + _{ij} \mathbb{N}$ In this form, particles from each side transport the concentration of each side independently. This works as numerical molecular diffusion and is not the concentration of each side independently. $m_{inell} \tilde{\mathbf{F}} = \frac{\tilde{m} + \tilde{m} }{2} \Phi_{i} + \frac{\tilde{m} - \tilde{m} }{2} \Phi_{i} + \tilde{p} \mathbb{N}$ The common of the AUSM type schemes is obtained. $m_{inell} \tilde{\mathbf{F}} = \frac{\tilde{m} + \tilde{m} }{2} \Phi_{i} + \frac{\tilde{m} - \tilde{m} }{2} \Phi_{i} + \tilde{p} \mathbb{N}$
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	By separating the flux to the advection and the pressure term, it was found that interface between the written in the weighted average of the pressure on the left and right. $\tilde{p} = p_{r}^{+} + p_{\kappa}^{-} = p_{L} \beta_{r}^{+} (\mathcal{M}_{r}) + p_{\kappa} \beta_{\overline{n}}^{-} (\mathcal{M}_{\kappa})$ If though it became clear by Hänel's modification, it has been included in the van Leer's FVS. We will keep using this interface pressure in AUSM type schemes.

Convert R.H.S. residual to the entropy variable Use the MUSCL FVM for conservative variables with all speed Riemann flux for R.H.S. evaluation. $\overline{Q}_i + \frac{1}{P_i} \sum_i (\overline{\mathbf{E}}_{i,j} - \widetilde{\mathbf{R}}_{i,j}) ds_{i,j} = 0$ Use the working variables for L.H.S. evaluation for simplicity. Variation of working variables are is obtained by mapping: $\delta q^* \equiv \frac{\partial q}{\partial Q} \left[-\delta i \frac{1}{P_i} \sum_j (\widetilde{\mathbf{E}}_{i,j} - \widetilde{\mathbf{R}}_{i,j}) ds_{i,j} \right]$ After approximate matrix inversion in working variables, variation of conservative variables is obtained by reverse mapping: $\delta Q \equiv \frac{\partial Q}{\partial q} \mathbf{B}^{-1} \delta q^*$ Focuses on the evaluation of the inviscid terms, since we treat the viscosity term in regular way,	Operator splitting of least error create SMAC like scheme L.H.S operator is splitting in the least error manner. The linear equation for the pressure can be solved by similar way as SMAC method for incompressible CFD. $\frac{\partial Q}{\partial q} [1 + \delta r, *A_n] [1 + \delta r, [*A_n + *A_n]] \frac{\partial q}{\partial Q} \Delta Q = Q - \theta (Q^* + \theta; Q^{r-1} - \delta r, \frac{1}{\Omega_1} \sum_{i} (\tilde{\mathbf{n}}_{i,i} - \tilde{\mathbf{n}}_{i,i})) dS_{i,i}$ A dvection Pressure $(\theta, \theta_i) = \begin{pmatrix} 2\theta + 2 & \theta \\ \theta + 2 & \theta + 2 \end{pmatrix}$ $\delta r = \frac{2}{\theta + 2} \delta r$ $\delta r = \frac{2}{\theta + 2} \delta r$ $\theta = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ The pressure part can be solved by the similar the defined as SMAC.
 Note on Time Integration Methods Time step restriction from CFL condition is severe for low Ma flows due to large ratio of the sound speed to the advection speed. The regular implicit time integration methods such as LU-S6S is effective for Ma>0.1. Therefore such schemes are good enough for most aerodynamic flows. The preconditioning methods as the implicit time integration work well in Ma<0.1 for steady flows. However, the choice of cut-off Ma is difficult and they causes storing dissipation on the sound wave propagation. GCGeneralized Compressible)-SMAC(Simplified Marker and Cell Method)(Shima, E., etc., 2018), which smoothly approaches to SMAC for the incompressible flows in very low Ma, seems promising. 	The Equation become simple in the entropy variables. Use entropy variables (velocity, pressure, entropy) as working variables. Use entropy variables (velocity, pressure, entropy) as working variables. Use entropy variables (velocity, pressure, entropy) as working variables. $\mathbf{u}_{r} + \mathbf{u} \cdot \nabla \mathbf{u} + \frac{1}{D} \nabla p + \mathbf{R}_{u} = 0$ $\mathbf{u}_{r} + \mathbf{u} \cdot \nabla p + \rho c^{2} \nabla \cdot \mathbf{u} + \mathbf{R}_{p} = 0$ $\mathbf{s}_{r} + \mathbf{u} \cdot \nabla s + \mathbf{R}_{p} = 0$ Semi-discretize in time to the δ form using the first order implicit method. $\delta \mathbf{u} + \delta \mathbf{i} \left\{ \mathbf{u} \cdot \nabla \delta \mathbf{u} + \frac{\partial \mathbf{R}_{p}}{\partial \mathbf{v}} \delta \mathbf{u} \right\} = \delta \mathbf{u}^{*}$ $\delta \mathbf{p} + \delta \mathbf{i} \left\{ \mathbf{u} \cdot \nabla \delta \mathbf{p} + \rho c^{2} \nabla \cdot \delta \mathbf{u} + \frac{\partial \mathbf{R}_{p}}{\partial p} \delta p \right\} = \delta p^{*}$

0	SLAU	Complex	Sood	Sood	Sood	200d	Sood		ers on SLAU K.Yasue for Matsuda, S. Liou, Dr.
emann Fluxes	FVS (Approximate Riemann Flux)	Simple	Good	Good	NG - Too dissipative	Good	NG - Too dissipative	ŝ	oring several pape bugawara and Dr.I KA. to thank Prof. TS he CFD schemes.
ics of the Rid	Roe (Approximate Riemann Flux)	Simple	NG -Orthogonal decomposition	NG -Carbuncle -Breakup at strong expansion	NG -Too dissipative	Good	Good	Acknowledgmen	ura for co-author . Tanabe, Dr.H.Su blications in JAX his opportunity t ijii, Prof. T.Jound discussions on th
naracteristi	Godunov (Exact Riemann Flux)	Simple	NG -Iteration	NG -Carbuncle	NG -Too dissipative	Good	Good		eful to K. Kitam me. ke to thank Dr.) ke to take 1 so like to take 1 wada, Prof. K.F ida for valuable
Ū		Theory	Cost	upersonic(Ma>2)	Low Ma(<0.1)	Moderate Ma (0.1 <ma<2)< td=""><td>Viscous flow</td><td></td><td>I am grat type sche I would lil preparing Prof. K.Sa and Y., Wa</td></ma<2)<>	Viscous flow		I am grat type sche I would lil preparing Prof. K.Sa and Y., Wa
	Gov. eqs. Compressible Navier-Stokes eqs.+ Scalar Gov. eqs. Compressible Navier-Stokes eqs.+ Scalar Discretization Flux Reconstruction P1 (2 nd -order) Remain Flus SHUG/on-order) Remain Flus Nuc (implicit LES)	Contraction Flamelet progress variable (FPV) True Antoparties 4500e TVD Runge-Kutha (3 ⁴⁴ -arder)	Reference and recently recent end of the recent				on in the full-scale liquid rocket engine veloped is used, but is not all-speed scheme)	ompressible CFD schemes essible CFD schemes on computation of low Ma	solved. sipation. eed Riemann fluxes. ze restriction ular and simple implicit time integration & LU-SGS, work well. he preconditioning methods are effective. efficient methods have been constructed. AC, Shima.E.,2015) e to small change. y separating the derivations from the uniform denough.

Thank you for your attention!

69