
[9-D-02]

Keywords:

©Retained by Authors

 ICCFD12

Oral presentation | Incompressible/compressible/hypersonic flow

Incompressible/compressible/hypersonic flow-II
Wed. Jul 17, 2024 4:30 PM - 6:30 PM Room D

Solving High Reynolds Number Flows on Cartesian Cut-cell
Meshes using a Jacobian-Free Newton-Krylov Method

*Alexander O. Kleb1, Krzysztof J. Fidkowksi1, Joaquim R. R. A. Martins1 （1. University of Michigan）
RANS, wall-modeled, cut-cell

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

Solving High Reynolds Number Flows on Cartesian
Cut-cell Meshes using a Jacobian-Free Newton–Krylov

Method.
Alex Kleb∗, Krzysztof J. Fidkowski∗ and Joaquim R. R. A. Martins∗

Corresponding author: akleb@umich.edu
∗ University of Michigan, USA.

Abstract: In this work, we developed a Newton–Krylov method for a second-order Cartesian
cut cell Reynolds-averaged Navier–Stokes (RANS) solver, Viscous Aerodynamic Cartesian Cut
cells (VACC), with the one equation Spalart–Allmaras (SA) turbulence model. The Newton–
Krylov method uses pseudo-transient continuation and a point Jacobi preconditioner to accelerate
convergence. Then various wall functions were compared on a finite flat plate and 2D bump cases.
The SA analytical wall function was used as a baseline. An ordinary differential equation (ODE)
wall function and wall-modeled RANS (WMRANS) approach were also implemented. Although
these methods all showed promise, the interior viscous fluxes resulted in oscillatory pressures.
These oscillations degraded the accuracy of all of the solutions. Additional work needs to be done
to strength the viscous stencil in and around the cut cells.

Keywords: Cartesian Cut Cells, Computational Fluid Dynamics, Turbulence Modeling.

1 Introduction
The Reynolds-averaged Navier–Stokes (RANS) equations are commonplace in aerodynamic analysis and
design. They provide acceptable accuracy for a reasonable cost at aircraft cruise conditions. The devel-
opment of the RANS adjoint encouraged the extensive use of RANS as the analysis tool in aerodynamic
shape optimization (ASO) [1, 2, 3, 4].

One of the most important and time-consuming parts of a RANS solution workflow is the generation
of the computational mesh. The computational mesh needs to be carefully crafted to balance the cost
and accuracy of a simulation. When performing aerodynamic shape optimization (ASO), additional care
is required to ensure that the mesh can be warped by a numerical optimizer [5]. With these three criteria
in mind, generating a suitable mesh by hand can take weeks or even months. While RANS solution
methods have become more efficient, the mesh generation process for complex geometries remains the
most time-intensive part of the solution procedure [6].

Cartesian cut-cell methods circumvent this problem by automatically generating meshes without user
intervention [7]. Accurate computational meshes for complex geometries can be generated in a matter
of seconds or minutes [8]. A wetted surface geometry is cut out of a background Cartesian mesh, and
then adaptive mesh refinement (AMR) is used to reduce discretization errors to adequate levels. This
procedure provides an accurate solution with minimal user input or a priori assumptions about the flow
structure.

Unfortunately, automatic meshing methods are currently only feasible for inviscid or incompressible
flows [9, 10, 11, 12]. When performing high-fidelity simulations, viscous effects such as skin friction can
contribute significantly to drag calculations and aircraft design. The main challenge for the Cartesian
cut-cell method is resolving boundary layers [12]. The flow states change much faster in the off-wall
direction than the wall-aligned direction. Traditional, boundary conforming, meshes address this issue by
stretching cells or grid points in the wall-aligned direction. This anisotropy allows the mesh to resolve the
rapidly changing off-wall properties without wasting too many grid points in the wall-aligned direction.
Isotropic cells small enough to resolve the off-wall properties would introduce too many superfluous
points along the wall, making these meshes computationally intractable. Alternatively, cut-cells could
be stretched along the boundary, but this approach can compromise the automatic nature of the meshing
algorithm for complex geometries.

Wall functions may provide a method for accurate solutions of Cartesian cut-cell meshes without
sacrificing automatic meshing. Wall functions provide a sub-mesh scale approximation for the flow in
the boundary layer [13]. This allows significantly larger cells than in boundary conforming, wall-resolved

1

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

meshes. Typical wall functions present an analytical function that can be tuned to match the flow at a
‘forcing point’ some distance away from the wall. The wall function can be used to get wall tangential
velocities and gradients to augment flux computations.

The accuracy of wall functions can break down depending on the location of the ‘forcing point’ in
the boundary layer. A quadratic function can be fit to the boundary layer using two flow states and the
no-slip condition at the wall [12, 14]. However, this ‘wall function’ would only be applicable in the viscous
sublayer of the boundary layer, and it therefore does not provide much benefit over a wall-resolved mesh.
Allmaras developed an analytical wall function that matches the solution of the RANS equations with a
Spalart–Allmaras (RANS-SA) turbulence model in [12]. This provides the exact, wall-resolved, solution
for a RANS-SA boundary layer with no pressure gradient through the log region. The convection terms
in the wake region cause this model to break down past the log region.

An important part of using a wall function is ensuring that the forcing point lies within a valid region
of the wall function. The forcing point location can introduce issues for automatic mesh generation
on geometries as simple as an airfoil. The thickness of the boundary layer on the suction side can be
orders of magnitude larger than the thickness on the pressure side. Being able to consistently place the
forcing point in the proper region of the boundary layer without over-resolving the background mesh is
challenging. Additionally, some wall functions, such as Spalding’s wall function may lose accuracy in the
transition between the viscous sublayer and the log region. It is therefore possible that a finer mesh is
less accurate than a coarser one when using a wall function.

Berger and Aftosmis [15] developed a unique type of wall function that solves a one-dimensional
ordinary differential equation (ODE) instead fitting data to a predetermined functional. Instead of being
fit to one or two parameters, the forcing point data are used as a boundary condition in the ODE. This
model introduces an approximation for the convection term in the wake region, allowing the model to
remain valid even further from the wall than the SA wall function.

Ursachi et al. [16] developed a new wall model RANS (WMRANS) approach that circumvents the
need for wall functions entirely. It enforces the same total shear stress, but simplifies the velocity and
turbulence variable profiles. Near the wall, the turbulent viscosity approaches a constant rather than
being linear in the log layer and quartic in the viscous sublayer. This generates a velocity profile that
is linear near the wall. Since the velocity no longer under goes rapid nonlinear changes near the wall,
coarser meshes are acceptable. Computational volumes with linear representations of the solution do a
much better job matching the analytical solution to the wall function. This method has the additional
benefit that it does not require forcing points, making it much easier to implement.

In this paper, we compare the effectiveness of the SA wall function, the ODE wall function and the
equivalent shear-stress boundary condition methods. Section 2 presents an in depth documentation of
the governing equations involved in each method. Section 3 outlines our Jacobian-free Newton–Krylov
(JFNK) RANS-SA solver and the way each boundary method fits in. Three exterior flow cases are
compared in section 4. Finally, concluding remarks are left to section 5.

2 Governing Equations
In this work, we investigate the Reynolds-averaged Navier–Stokes (RANS) equations with the compress-
ible Spalart–Allmaras negative (SA-neg) turbulence model,

∂t(ρν̃) + ∂j(ρuj ν̃) = ∂j

(
1

σ
ρ(ν + ν′)∂j ν̃

)
− 1

σ
(ν + ν′)∂jρ∂j ν̃ +

cb2ρ

σ
∂j ν̃∂j ν̃ + P −D. (1)

We leave the detailed explanation of each term to numerous online resources such as the NASA turbulence
modeling resource1.

To accurately resolve boundary layers, we make use of three different wall models. The first two
wall models investigated follow the work of Berger and Aftosmis [12, 15]. The first wall function is a
traditional analytical function that is fit based on the background state at an interior forcing point. This
function was developed by Allmaras [12] to match a background, wall-resolved, RANS-SA solution into
the log region of the boundary layer. The analytical wall function is given by,

u+(y+) = B̄ + c1 log
((
y+ + a1

)2
+ b21

)
− c2 log

((
y+ + a2

)2
+ b22

)
− c3 atan2

(
b1, y

+ + a1
)
− c4 atan2

(
b2, y

+ + a2
)
,

(2)

1https://turbmodels.larc.nasa.gov/

2

https://turbmodels.larc.nasa.gov/

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

where the given coefficients given are from Allmaras [12] and the plus quantities are given by,

u+ =
u

uτ
and y+ =

ηuτ
ν
, (3)

where uτ is the friction velocity, u is the wall tangential velocity, and η is the wall normal distance. The
second wall function retains the forcing point, but solves a 1D boundary valued ODE instead of fitting a
state to the function. This wall function was developed by Berger and Aftosmis [15] to increase accuracy
into the wake region of the boundary layer. The ODE is given by,

∂

∂η

[
(µ+ µt)

∂u

∂η

]
=
∂p

∂ξ

∣∣∣∣
F

+ ψ(η) ρ|F

[
uF

∂u

∂ξ

∣∣∣∣
F

+ vF
∂u

∂η

∣∣∣∣
F

]
∂

∂η

[
1

σ
(ν + ν̃)

∂ν̃

∂η

]
= −cb2

σ

(
∂ν̃

∂η

)2

− (P −D),

(4)

where ξ is the wall tangential distance, u is the tangential velocity, v is the wall normal velocity, µ is the
dynamic viscosity, µt is the turbulent dynamic viscosity, ν is the kinematic viscosity, ν̃ is the turbulence
variable, p is the pressure, (·)|F is a constant quantity evaluated at the forcing point, and (P −D) along
with σ and cb2 come from the definitions in the SA turbulence model. ψ(η) is an activation function
that turns on the convection terms in the ODE away from the wall. We define our activation function
as presented by Berger and Aftosmis [15],

ψ(η) =
u+SA(η)

u+SA(F)
, (5)

where u+SA is defined by equation 2.
The final wall model modifies the SA turbulence model to generate a linear velocity profile near the

wall instead of the traditional nonlinear velocity profile. It does not need to introduce data at an interior
forcing point to do this. This model was developed by Ursachi et al. [16]. The changes to the SA model
are as follows,

µt = ρνfm1, (6a)

fm1 =
√
χ2 + χ2

t0, (6b)

S̃ = S +
ν̃

κ2d2
fm2, (6c)

fm2 = 1− χ

1 + fm1
, (6d)

where χt0 is a parameter that indicates how fast the wall-modeled solution approaches the RANS solution
in the log layer. fm1 has replaced fv1 and fm2 has replaced fv2. The resulting velocity profile does not
go to zero at the wall and necessitates updated boundary conditions. For the momentum equations we
have a Robin condition between the wall shear stress and slip velocity,

τ⃗w,m = ρ |u⃗τ,m| u⃗τ,m, (7)

where uτ,m is the friction velocity,

u⃗τ,m =
u⃗∥

u+WM(0)
, (8)

where u⃗∥ is the wall tangential velocity and u+WM is analytical wall model velocity. We leave the full
definition of u+WM to reference [16], but reproduce the relevant result here,

u+WM(0) =
log (κχt0)

κ
+ c (9)

where κ is the von Kŕmń constant, and c is defined in [16]. The wall model also affects the energy
equation. Ursachi et al. derived the heat flux of the wall model given the RANS-SA heat flux,

qw|WM = qw|RANS − u⃗∥ · τ⃗w,m. (10)

3

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

Figure 1: The coupling between the forcing point and the background mesh. The background mesh
provides a state at the forcing point that is fit to the desired wall function. The wall function can then
provide states and gradients at various locations for computing viscous fluxes.

Since there is a slip velocity, the heat flux for an adiabatic boundary condition is not zero. This is not a
physical condition, as the nonzero heat flux accounts for the heat released by viscous dissipation in the
unresolved near-wall region.

3 Methodology
Our flow solver is a two-dimensional second-order finite volume Cartesian cut-cell method [14, 17]. We
retain second-order inviscid fluxes for the turbulence variable. Cell gradients are computed using a
least-squares reconstruction from neighboring cell states. Limiters are computed by solving a local linear
programming problem in each cell to obtain a directional limiter that retains as much of the original
gradient as possible while satisfying total variation diminishing constraints.

The introduction of viscous terms necessitates gradients at faces. For faces between two interior cells,
the cell centroids are aligned with their neighbors along either the x or y axis through the face centroid.
Gradients in the direction perpendicular to the face normal are computed by averaging the adjacent
cell gradients. The gradients in the direction parallel to the face normal are computed with a center
difference across the adjacent cell states.

In cut-cells, the linear state representation is not accurate enough in the isotropic Cartesian cut-cells.
To circumvent this issue without over-resolving the wall tangential features, we use one of the wall models
in section 2. WMRANS presented by Ursachi et al. solves the issue by making the velocity profile near
the wall linear. With a linear velocity profile near the wall, the need for additional resolution is mitigated
and the system can be solved similar to inviscid flow problems.

The two wall function methods make use of a coupled forcing point strategy to resolve the wall
normal velocity state change. Both wall functions follow the same general strategy shown in figure 1.
Each boundary face computes a forcing point by drawing a line that starts at the boundary, passing
through the cell centroid a distance h = 1.5 × min(dx, dy) away from the boundary. The distance
h is a constant to compute smooth skin frictions even with varying cut-cell sizes [13]. During a flux
evaluation, a state is projected to the forcing point from the cell containing it using its least-squares
gradient. The state at the forcing point is then rotated into wall normal and tangential coordinates
and fit to the appropriate wall function. Once the wall function is defined, it can be used to inform
the fluxes for the background cut-cell. The wall shear is computed straight from the wall function and
then rotated back into the global coordinate frame. As before, the interior faces adjacent to refinement
boundaries or cut-cells are computed with averaging in the direction perpendicular to the face normal
and a difference in the direction parallel to the face. However, in these cases, the centroids are not

4

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

y

x

Figure 2: The recentering process used to compute gradients at face centroids not aligned with the cell
centroids.

aligned in the coordinate directions through the face centroid. This does not change the gradient that is
averaged, but the differenced gradient needs a recentered state so that the difference is computed through
the face centroid. Figure 2 shows this process. For the cut cells, this projection is done by reading off
states from the associated wall function that is the same distance away from the wall as the projection
point. This ignores the state variation in the wall transverse direction, which is generally much smaller.
A similar procedure is used to compute the gradient used in averaging, pulling it off the wall function.
In the interior cells, this projection is done using the least-squares gradient.

3.1 Jacobian-Free Newton–Krylov Solver
To converge the global solution to steady state, we use a Jacobian-free Newton–Krylov solver with
pseudo-transient continuation. A Newton–Krylov method converges a system of residuals to zero. We
start with the flux form of the governing PDE,

∂u

∂t
+ F⃗(u) = S(u), (11)

where u is the state vector, S is the source term and F⃗ is the flux vector. For the 2D finite volume
method, the steady-state residual for a single cell takes the form,

Rcell =

Ne∑
e=1

(
F̂
∣∣∣
e
· n⃗e

)
le − ScellAcell, (12)

where e indicates edges of the cell and F̂ is a numerical flux computed at an edge. The Newton method
solves linear systems at each step,

∂R

∂u

∣∣∣∣
un

∆u = −R(un), (13)

where un+1 = un + ∆u. Newton’s method exhibits quadratic nonlinear convergence once the state is
close to the final solution. However, getting close to the final solution for complex CFD cases can be
challenging. To address this, we introduce a pseudo-transient continuation term to guide the Newton–
Krylov solver towards the solution using unsteady physics.

Pseudo-transient continuation uses an artificial times step as a globalization strategy for the Newton–
Krylov method [18, 19, 20]. We use a backward-Euler time step,

A

∆t

(
un+1 − un

)
+R

(
un+1

)
= 0, (14)

where A/∆t is the diagonal matrix containing the area of the appropriate cell divided by its local
time step. We compute the time steps as described in [17]. While this time step is computed for
conserved variables, the Newton solver does not require that we use conserved variables. Our flow solver
uses primitive state variables, [ρ, u, v, p, ν̃], to obtain less diffusive gradients during the inviscid flux
calculation. The computed residuals are still in ‘conserved form’, but the actual evolution of the state
does not matter as long as the scheme is stable and the solver reaches R(u) = 0. Backward Euler is
A-plane stable and therefore will always be stable as long as we have negative real-part eigenvalues.

5

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

We apply a nonlinear preconditioner to the artificial time step to match the primitive state update
∆u to the conserved state time step, A/∆t. This is not strictly necessary, but we found that it helped
nonlinear convergence. The nonlinear preconditioner is,

Pt,local =
∂uconservative

∂uprimitive
=


1 0 0 0 0
u ρ 0 0 0
v 0 ρ 0 0

(u2 + v2)/2 ρu ρv 1/(γ − 1) 0
ν̃ 0 0 0 ρ

 , (15)

where γ is the specific heat ratio. We premultiply the time step term in equation 14 by a block diagonal
Pt matrix made up of matrices from equation 15.

To accelerate convergence further we normalize the turbulence variable equation by
√
ν̃∞. The

turbulence variable becomes ν̃norm = ν̃/
√
ν̃∞ and we divide equation 1 by the same value,

∂t(ρν̃norm) + ∂j(ρuj ν̃norm) =

∂j

(
1

σ
ρ(ν + ν′)∂j ν̃norm

)
− 1

σ
(ν + ν′)∂jρ∂j ν̃norm +

√
ν̃∞

cb2ρ

σ
∂j ν̃norm∂j ν̃norm +

P −D√
ν̃∞

.
(16)

This scales the state variables to similar magnitudes to give the Newton solver a better conditioned
system.

To converge to steady state, we linearize equation 14 about un with the preconditioner from equa-
tion 15, (

A

∆t
Pt +

∂R

∂u

∣∣∣∣
un

)
∆u = −R (un) . (17)

As the simulation proceeds, the time step is increased towards infinity and equation 17 recovers the full
Newton step in equation 13.

Each nonlinear step requires solving the linear system in equation 17. To avoid forming the full
residual Jacobian, we use the Generalized Minimum Residual method (GMRES) [21]. GMRES is a
Krylov subspace method that solves the linear system Ax = b by building a subspace through repeated
multiplications of the A matrix. This process only requires a matrix vector product operator: given
some vector v this operator outputs Av. For our case, this operator can be constructed using Fréchet
derivatives about the point un,

∂R

∂u

∣∣∣∣
un

v ≈ R (un + ϵv)−R (un)

ϵ
. (18)

We defined ϵ based on the work in [22, 20],

ϵ =

{
erelv · un/||v||22 if |v · un| > emin||v||1
ereleminsign(v · un)||v||1/||v||22 otherwise,

(19)

where erel = 10−8 and emin = 10−6.
A critical part of the success in GMRES is the strength of the preconditioner. The preconditioner

is an approximate inverse of A that is applied as a matrix vector product to accelerate the convergence
of GMRES. We used a block diagonal point Jacobi preconditioner, where each block corresponds to
one cell. All the diagonal blocks of the residual Jacobian were computed analytically and then each
block was inverted using an LU factorization with row pivoting. This preconditioner is recomputed for
every nonlinear step. It provides adequate acceleration to run the small 2D test cases we are using to
investigate the wall models. However, for production cases, something more complex is certainly needed.

The final piece of this puzzle is the nonlinear controller. The nonlinear controller modifies the time
step in equation 17 based on the status of the nonlinear convergence. We modify the CFL to affect the
computed time step. Figure 3 presents a flowchart of the nonlinear controller. Each nonlinear iteration
starts by solving the linear system in equation 17. The initial ∆u provided to the linear solver is 0. The
linear solver is given a convergence criterion and a restriction on the number of Krylov subspace vectors
it is allowed to build. The linear convergence criterion is a relative drop in the linear residual of four
orders. As the steady solution is approached, this becomes a tighter absolute tolerance. This prevents
the linear solver from spending too much time on linear solves when the nonlinear solver is still looking

6

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

Linear Solver NaN?

Physicality Check
α = min(αρ, αp)

Solve linear system(
A
∆tPt +

∂R
∂u

∣∣
un

)
∆un = −R (un)

α > 0.01

CFLn <
√

||R(u0)||2
||R(un)||2

Increase CFL
ϕ = ||R(un+∆un)||2−||R(un)||2

||R(un+∆un)||2
CFLn+1 = βϕCFLn

|| ∂R
∂u |un∆un||

2

||R(un)||2 < 10−4

||R(un+∆un)||2
||R(un)||2 < 1

Update State
un+1 = un + α∆un

|| ∂R
∂u |un∆un||

2

||R(un)||2 < 10−3

Decrease CFL
CFLn+1 = κCFLn

Set CFL

CFLn =
√

R(u0)
R(un)

No

Yes

Yes

Yes

Yes

No

Yes

No

No

Yes

No

No

Figure 3: A flowchart describing the nonlinear controller logic. α is the fraction of the Newton step
accepted; computed in equation 21. The CFL is increased with equation 25. The CFL is decreased with
equation 23. We choose β = 10 and κ = 0.5 for the CFL controller parameters.

7

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

for the quadratic bucket.
After computing the linear solution, the nonlinear controller performs a line search to enforce a

physicality constraint. Our line search is hard cut-off on the density and pressure values. For density, it
is,

αρ =

{
0.2−ρn

∆ρn if ρn +∆ρn < 0.2

1 otherwise,
(20)

where α is the fraction of the full Newton step. We chose 0.2, but this could be any value greater than
zero that the state should not decrease past. The same calculation is made for pressure and then the
full system α is given by,

α = min(αρ, αp). (21)

If α is too small, the nonlinear controller attempts to reduce the CFL and continues to the next nonlinear
iteration.

Whenever the nonlinear controller tries to reduce the CFL it checks if it is already below some
minimum threshold,

CFLn <

√
||R(u0)||2
||R(un)||2

. (22)

If the CFL is already below this minimum threshold, the controller accepts the update and set the CFL
to this minimum value. This is done to prevent the solver from stalling if it gets into a bad spot. Taking
bad steps to get to a different spot in the design space is sometimes enough to obtain a solution. If the
CFL is not below the threshold, it is reduced by,

CFLn+1 = κCFLn, (23)

where we choose κ = 0.5. When the CFL is reduced the computed state update is rejected and the solver
moves on to the next nonlinear iteration.

In addition to the relative convergence tolerance requested of the linear solver, there is a second
relative converge tolerance specified by the nonlinear controller of 10−3. If the linear system does not
reach a relative convergence of 10−3 before maxing out the number of allowed Krylov subspace vectors, the
nonlinear controller again attempts to reduce the CFL. If the linear system reached a relative convergence
of 10−3, but not 10−4, the step is accepted and the CFL is left unchanged. If the linear system reaches
a relative convergence of 10−4 and the steady-state nonlinear residual dropped after taking the update,

||R(un +∆un)||2
||R(un)||2

< 1, (24)

the CFL is increased,

CFLn+1 = βϕCFLn where ϕ =
||R(un +∆un)||2 − ||R(un)||2

||R(un +∆un)||2
(25)

and we choose β = 10.

3.2 SA Wall Function
The SA wall function is a traditional wall function. The friction velocity, uτ , in equation 2 is fit to the
forcing point data using a Newton method. Once uτ is computed, equation 2 provides u and ∂u/∂η as
a function of η.

3.3 ODE Wall Function
The ODE wall function requires solving a 1D ODE instead of fitting a single parameter. We implemented
a high-order continuous Galerkin (CG) method with Mesh Optimization via Error Sampling and Syn-
thesis (MOESS) for solving equation 4. The convection terms in equation 4 are constants with respect
to our state variables, giving us an ODE with no advection terms. This lends itself to a CG formulation.
The solver uses a Newton–Krylov solver with pseudo-transient continuation to drive the residuals to
zero. Unlike the background flow solver, the ODE solver builds the full residual Jacobian for performing

8

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

matrix vector products in GMRES. Using the notation in equation 11 we can rewrite equation 4,

F(u) =

−(µ+ µt)
∂u
∂y

−(ν + ν̃)∂ν̃∂y

 , (26)

and,

S(u) =

 ∂p
∂x

∣∣∣
F
+ ψ(y) ρ|F

[
uF

∂u
∂x

∣∣
F
+ vF

∂u
∂y

∣∣∣
F

]
−cb2

(
∂ν̃
∂y

)2

− σ(production − destruction)

 . (27)

Since an ODE is solved in every cut cell during every residual evaluation, it is critical that the ODE
solver is both fast and robust. To facilitate speed, a Block ILU(0) preconditioner is used to accelerate
the GMRES convergence. A block consists of the 2 by 2 matrix associated with each basis function
rather than the traditional element block present in discontinuous Galerkin methods. No reordering of
the rows is necessary as this is a 1D problem. This preconditioner allows GMRES to solve most systems
with hundreds of variables in less than ten Krylov subspace vector iterations. To facilitate robustness,
the GMRES method is allowed to build the full subspace if necessary to ensure a solution is found.

The general nonlinear strategy remains consistent with that of the background solver with special
considerations for robustness. The physicality check for this solver requires that ν̃ > 0. When the solver
wants to take a step that causes one of the turbulence variable states to go negative, the CFL is reduced
and the linear step is rejected. If the CFL is at the lower allowable bound, the computed step is taken
for all basis functions except the non-physical one. In general, this allows the problematic basis function
to recover. We do not check for negative turbulence variables everywhere in the cell, only at the basis
function locations. We found this sufficient to obtaining converged, physical, solutions.

Even with a tuned nonlinear controller, it is still possible for the ODE solution to fail. When this
happens, we reduce the complexity of the ODE for the rest of the global flow’s current nonlinear step. The
x-momentum source term in equation 4 is removed. This is sufficient to protect the ODE solver except
on particularly coarse meshes. Even without the convection source term, the ODE is theoretically more
accurate than the SA wall function because it allows for nonlinear variation in the turbulence variable.
In practice this difference is minuscule compared to the change once the convection source term is added.
As a last resort, the ODE is discarded entirely for the analytical SA wall function. After each nonlinear
iteration the complexity of each ODE is increased by one level if it is reduced. Allowing the ODE to
reintroduce complexity during linear solves was tested, but prevented linear convergence in most cases
where it was needed.

To ensure accurate solutions for a wide variety of boundary conditions, we implemented MOESS in
conjunction with our CG solver [23]. MOESS iteratively determines the optimal change in a metric field
given a prescribed metric-cost and metric-error relationship. We use it to optimally distribute a desired
number of degrees of freedom along our domain to get an accurate wall shear stress.

To use MOESS, an element error indicator is required. We use the adjoint weighted residual,

δJ ≈ −ΨT
hRh(U

H
h), (28)

where δJ is the error of some functional J with respect to each state, Ψh is the fine space adjoint, and
Rh

(
UH

h

)
is the fine space residual evaluated at the coarse space solution prolonged to the fine space.

We chose an increase in the solution order, p, as our fine space and used the wall shear stress as J . We
solved the fine space adjoint using GMRES with an exact residual Jacobian. The error indicator for an
element is computed by summing over the error contribution for each of its basis functions. The basis
functions that are shared between elements contribute half of their error to each element. MOESS uses
this error indicator to update a Riemann metric field.

A Riemann metric field, M(x⃗), is a field of symmetric positive definite (SPD) tensors that encode
information about the desired mesh size. In multiple dimension, it can encode stretching and rotations to
generate anisotropic meshes. In one dimension it is a scalar field the indicates the desired size of elements.
The metric provides a way to measure the distance from a point, x⃗, to another point infinitesimally far
away, x⃗+ δx⃗. This distance is,

δl =
√
δx⃗TMδx⃗, (29)

9

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

and in 1D,
δl = δx

√
M. (30)

Every element should be of length one under the metric.
Given a metric field, we compute a new mesh by marching unit distances along our domain until we

reach the end. MOESS provides a metric field that corresponds to a mesh with a user specified, target,
number of degrees of freedom (dof). This metric field is stored at the previous mesh nodes. We assume
the logarithm of the metric varies linearly between two nodes [24],

Mx =Ma

(
Mb

Ma

) x−a
b−a

, (31)

where Ma is the metric at the vertex a < x and Mb is the metric at the vertex b > x. To compute the
metric length between two points, a and b, we use,

Le =

{
La−Lb

logLa/Lb
|La − Lb| > 0.001

La+Lb

2 else
, with La = le

√
Ma, Lb = le

√
Mb. (32)

For 1D CG, the total number of degrees of freedom (dof) is Np+ 1, where N is the number of elements
and p is the solution order. We can compute the appropriate number of elements for the new mesh using
the requested number of degrees of freedom. From the definition of the metric field, each element should
be the same length under the metric. Ideally, MOESS computes a metric field such that each element is
length one under the metric. This is not always the case, so we use equation 32 to compute the piecewise
integral of the metric over the entire domain. This is divided by the number of elements requested to
get the constant valued metric length for all the elements. To generate the mesh, we start at y = 0 and
place points at the constant valued metric length distances apart until the other end of the domain is
reached.

Equation 32 in conjunction with a Newton solver is used to compute the location of each point in
the new mesh. Each point in the new mesh will lie between two points on the background mesh, [a, b].
To place that point, the interval [a, b] is determined by checking the integral of the metric from the
previously placed new mesh point and the next old mesh point. If that distance does not reach the
desired metric length, then the next interval defined by the old mesh point and the next old mesh point
is checked. This proceeds until the correct interval [a, b] is found. Then, equation 32 is cast as a residual
and a Newton solver identifies x such that the metric length between the previous new mesh point and
this point is the desired length.

Figure 4 shows the progression of MOESS on a p = 2 solution of the ODE solution starting with a
uniformly spaced mesh. The boundary conditions for this case comes from the 2D turbulent bump case
on the NASA turbulence modeling resource website [25]. The finest CFL3D solution was used to obtain
forcing point data downstream of the bump. Each MOESS cycle consists of a flow solution, followed by
the MOESS mesh optimization. Figure 4a indicates that the naive uniform mesh is terrible. The velocity
profile does not come close to matching what we expect. Even with this mesh, the Newton–Krylov solver
is robust enough to easily converge the system. After the first adaptation, the number of cells is doubled,
and the mesh points start sliding towards the wall. The velocity profile converges to what we would
expect. This forcing point is approaching the wake region, and the ODE is able to begin predicting this
transition.

4 Results

4.1 Turbulent Finite Flat Plate
The turbulent flat plate case tests the adiabatic wall boundary conditions without introducing numerical
difficulties around cut-cells. This case is run at Mach 0.2 with a Reynolds number 107 and contains a
plate that extends ten reference lengths. For the WMRANS we set χt0 = 20. We ran a sequence of
meshes for this case. The L0 mesh had an initial off-wall spacing of y ≈ 10−4. Each subsequent mesh
performed isotropic coarsening to double the initial off-wall spacing. The far-field retains the same mesh
size, so each level is not an exact 25% decrease in the number of cells. The L0 mesh has approximately
650k isotropic cells. The L3 mesh has approximately 84k isotropic cells.

Figure 5 presents velocity profiles for all three methods at three different stations. The two wall

10

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

100 101 102 103

y +

0

5

10

15

20

u
+

Analytic SA Wall Func
ODE Wall Function

0 200 400 600 800 1000 1200 1400
y +

0

50

100

150

200

250

ν̃/
ν

0 200 400 600 800 1000 1200 1400
y +

0

500

1000

1500

2000

2500

3000

3500

Er
ro

r

(a) Initial mesh with 10 linearly spaced p = 2 elements.

100 101 102 103

y +

0

5

10

15

20

u
+

Analytic SA Wall Func
ODE Wall Function

0 200 400 600 800 1000 1200 1400
y +

0

50

100

150

200

250

ν̃/
ν

0 200 400 600 800 1000 1200 1400
y +

0

500

1000

1500

2000

2500

3000

3500

Er
ro

r
(b) Mesh after three MOESS cycles with 20 elements.

100 101 102 103

y +

0

5

10

15

20

u
+

Analytic SA Wall Func
ODE Wall Function

0 200 400 600 800 1000 1200 1400
y +

0

50

100

150

200

250

ν̃/
ν

0 200 400 600 800 1000 1200 1400
y +

0

500

1000

1500

2000

2500

3000

3500

Er
ro

r

(c) Mesh after six MOESS cycles with 20 elements.

100 101 102 103

y +

0

5

10

15

20

u
+

Analytic SA Wall Func
ODE Wall Function

0 200 400 600 800 1000 1200 1400
y +

0

50

100

150

200

250

ν̃/
ν

0 200 400 600 800 1000 1200 1400
y +

0

500

1000

1500

2000

2500

3000

3500

Er
ro

r

(d) Mesh after nine MOESS cycles with 20 elements.

Figure 4: MOESS sequence on the ODE with p = 2 elements. The initial mesh is ten linearly spaced
elements. The target number of elements is twenty. These meshes are adapted on the gradient of the
velocity at y = 0. A nodal basis is used, so the mesh points correspond to the basis function locations.
The u+ and ν̃ plots show points at each basis function’s global space location. The error plots show
points at the middle of each element. The analytic SA wall function shown is the one used in the x-
momentum source in equation 4. It is not necessarily accurate given the forcing point location.

11

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

10 1 100 101 102 103 104 105

y +

0

5

10

15

20

25

30

u
+

SA Profile
L0 SLIP
L2 SLIP
L3 SLIP
L0 ODE
L2 ODE
L3 ODE
L0 SA
L2 SA
L3 SA

(a) Velocity profiles at Rex = 1× 107

10 1 100 101 102 103 104 105

y +

0

5

10

15

20

25

30

u
+

SA Profile
L0 SLIP
L2 SLIP
L3 SLIP
L0 ODE
L2 ODE
L3 ODE
L0 SA
L2 SA
L3 SA

(b) Velocity profiles at Rex = 2× 107

10 1 100 101 102 103 104 105

y +

0

5

10

15

20

25

30

u
+

SA Profile
L0 SLIP
L2 SLIP
L3 SLIP
L0 ODE
L2 ODE
L3 ODE
L0 SA
L2 SA
L3 SA

(c) Velocity profiles at Rex = 5× 107

Figure 5: Velocity profiles for the zero pressure gradient finite flat plate case. The plate is ten reference
lengths long. This was run at Mach 0.2 and Reynolds number 107. The L0 mesh has initial off-wall
spacing at y ≈ 10−4. Each subsequent level of mesh doubles the off-wall spacing.

106 107 108

Rex

0.0010

0.0015

0.0020

0.0025

0.0030

c f

L0 SLIP
L2 SLIP
L3 SLIP
L0 ODE
L2 ODE
L3 ODE
L0 SA
L2 SA
L3 SA

Figure 6: The skin friction coefficient for the finite flat plate case. The L0 mesh has an initial off-wall
spacing at y ≈ 10−4. Each subsequent level of mesh doubles the off-wall spacing.

functions match the expected profile well at each station. In both cases, there is a single point that is
not on the profile. This is the cut cell point, the first point on the line is the forcing point cell. The
cut cell does not provide the states necessary to compute skin frictions, since this information comes
from the forcing point. The WMRANS solution is converging to the appropriate solution as the mesh
is refined. We only see the last point in each velocity profile begin to converge to the expected linear
velocity solution for the WMRANS. This implies that the WMRANS needs additional resolution than
the wall function approaches even though the profile is more benign.

Figures 6 and 7 show the skin frictions and pressure coefficients respectively. The biggest difference
in between the mesh levels is seen in the skin friction plot. The x-axis is on a log scale, making it
clear that the biggest discrepancy is the boundary layer start up. The wall transverse direction contains
constant mesh resolution for a given mesh. We see as the mesh is refined, the skin friction converges to
the asymptotic value sooner. In the coarsest ODE mesh result, we can see discontinuities in the skin
friction where the wall function has had to change the complexity of the wall function to converge the
ODE. Again, we see the same behavior with the WMRANS approaching the expected solution as the
mesh resolution is increased.

Figure 8 compares the previously used Runge–Kutta scheme developed [17] with the new Newton–
Krylov scheme. Even with a relatively weak precondtioner, the Newton–Krylov scheme is easily able to
outperform the Runge-Kutta scheme. In most cases, we found that once we found the Newton bucket,
the convergence rate was inhibited by the linear solver’s ability to solve increasingly stiff systems as the
CFL ramped, limiting nonlinear convergence in the bucket to steep linear convergence.

12

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

0.0 0.2 0.4 0.6 0.8 1.0
Rex

1e8

0.015

0.010

0.005

0.000

0.005

0.010

c p

L0 SLIP
L2 SLIP
L3 SLIP
L0 ODE
L2 ODE
L3 ODE
L0 SA
L2 SA
L3 SA

Figure 7: The pressure coefficients for the finite flat plate case. The L0 mesh has an initial off-wall
spacing at y ≈ 10−4. Each subsequent level of mesh doubles the off-wall spacing.

0 50 100 150 200 250 300 350
CPU Hours [Skylake]

10 11

10 9

10 7

10 5

10 3

To
tal

 R
es

id
ua

l

RK
NK

Figure 8: The time to converge the turbulent flat plate case on the L3 mesh.

13

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

10 1 100 101 102 103 104 105

y +

0

5

10

15

20

25

30

35

u
+

SA Profile
L1 SLIP
L2 SLIP
L3 SLIP
L1 ODE
L2 ODE
L3 ODE
L1 SA
L2 SA
L3 SA

(a) Velocity profiles at Rex = 1× 107

10 1 100 101 102 103 104 105

y +

0

5

10

15

20

25

30

35

u
+

SA Profile
L1 SLIP
L2 SLIP
L3 SLIP
L1 ODE
L2 ODE
L3 ODE
L1 SA
L2 SA
L3 SA

(b) Velocity profiles at Rex = 2× 107

10 1 100 101 102 103 104 105

y +

0

5

10

15

20

25

30

u
+

SA Profile
L1 SLIP
L2 SLIP
L3 SLIP
L1 ODE
L2 ODE
L3 ODE
L1 SA
L2 SA
L3 SA

(c) Velocity profiles at Rex = 5× 107

Figure 9: Velocity profiles for the zero pressure gradient finite flat plate case with cut-cells. The plate
is ten reference lengths long. This was run at Mach 0.2 and Reynolds number 107. The L0 mesh has
initial off-wall spacing at y ≈ 10−4. Each subsequent level of mesh doubles the off-wall spacing.

106 107 108

Rex

0.0010

0.0015

0.0020

0.0025

0.0030

c f

L1 SLIP
L2 SLIP
L3 SLIP
L1 ODE
L2 ODE
L3 ODE
L1 SA
L2 SA
L3 SA

Figure 10: The skin friction for the rotated finite flat plate case. The L0 mesh has an initial off-wall
spacing at y ≈ 10−4. Each subsequent level of mesh doubles the off-wall spacing.

4.2 Rotated Finite Flat Plate
This is the same case as the rotated finite flat plate, but with cut-cells introduced. Rather than placing
the flat plate along the bottom boundary of the domain, it is set into the domain at a 15°angle (figure 11).
We used the same conditions as the wall-aligned flat plate (Mach 0.2 and Reynolds number 107).

Figure 9 shows the velocity profiles for the rotated finite flat plate. The solver struggles considerably
more when cut-cells are introduced. The gradient stencils in these cells are degraded and the principle
directions are no longer aligned with the mesh. We still see similar behavior in the convergence of the
results, as the mesh is refined all solutions look to approach the expected results.

Figure 10 shows the skin friction coefficients for the rotated flat plate case. The skin frictions are
considerably more noisy for the ODE wall function and WMRANS. The pressure gradients in figure 11
begin to reveal why this might be. This is a zero pressure gradient case, and we would expect to see no
pressure gradients. Small patterns in the mesh affect the pressure, resulting in an oscillating pressure
gradient that follows the triangle cut-cell pattern along the wall. The oscillations only appear around
the cut cells, and as the mesh is refined, the physical location of the oscillations moves closer to the
wall. This behavior is independent of the method we choose to resolve the wall, even with the analytical
SA function. These oscillations do not appear in the density, velocity, or turbulence variable states.
However, the oscillations do show up in the internal energy, implying that the problem is localized to
the pressure. We do not see this behavior when running inviscid cases (see figure 13). It would appear
that the current viscous flux scheme is not adequate for resolving viscous fluxes in and around cut cells.
To alleviate some of this issue, we implemented a bilinear interpolation for the pressure gradient at the
forcing points based on the face neighbors of the forcing point cells.

The SA wall function is able to hide this in the skin friction because the only information it uses at
the forcing point is the tangential velocity momentum, which does not oscillate. The ODE wall function

14

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

Figure 11: A plot of the velocity magnitude and pressure gradients on the rotated flat plate in the
boundary layer. The vectors are the computed least-squares gradients used in the inviscid fluxes, viscous
fluxes, and wall function forcing points. The pressure gradient shows regular non-physical oscillations.
These oscillations are a mesh artifact centered around triangle cut cells.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
y− y0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

u
/u

∞

CFL3D
L3 SA
L2 SA
L1 SA
L3 ODE
L2 ODE
L1 ODE
L3 ODE_NO_S
L2 ODE_NO_S
L1 ODE_NO_S

(a) x = 0.75

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
y− y0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

u
/u

∞

CFL3D
L3 SA
L2 SA
L1 SA
L3 ODE
L2 ODE
L1 ODE
L3 ODE_NO_S
L2 ODE_NO_S
L1 ODE_NO_S

(b) x = 1.20148

Figure 12: The velocity profiles for the 2D bump case.

contains ∂p/∂ξ in the x-momentum source term and is directly affected by the pressure oscillations. All
of the information it uses to compute viscous fluxes on cut-cell faces then propagates these oscillations
into the fluxes. WMRANS also depends more on the states in and around cut-cells than the SA wall
function because there is no notion of a wall function to improve the states used at faces.

Even with the oscillations, the ODE solution is able to get something that resembles expected be-
havior. The slip wall struggles with these oscillations, particularly in converging solutions on the finer
grids. We expect that with more accurate viscous fluxes in the cut cells that WMRANS would perform
similar to the grid aligned case.

4.3 2D Bump
We ran the 2D bump-in-channel verification case from the NASA turbulence modeling resource [25]. It
was run at Mach 0.2 and Reynolds number 3×106. The L1 mesh has approximately 220k isotropic cells.
The L3 mesh has approximately 59k isotropic cells. This case introduces a pressure gradient into the
solution.

Figure 12 shows two velocity profiles on the top of the bump and in the wake region. In all cases, the
mesh converged solution matches the CFL3D solution. We introduce a ‘new’ wall function that is the
same as the ODE, but without the x-momentum source terms in equation 4.

15

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

p
/
ξ

RANS-SA
RANS-SA w/ BLI
Euler
Euler w/ BLI

Figure 13: The wall tangential pressure gradient used at the forcing point for the ODE wall function.
The bilinear interpolation solutions are smoother than the solutions without the interpolation. We used
an Euler pressure profile to test a more realistic pressure gradient profile.

For the bump case, we verified the bilinear interpolation of the pressure gradient using an inviscid
solution. Figure 13 shows the effect of the bilinear interpolation on an inviscid and a viscous case. The
interpolation has a smoothing effect in both cases, but it is not enough to recover an acceptable pressure
gradient in the viscous case.

Figure 14 presents the pressure coefficients along the bump. Both the SA wall function and the ODE
wall function are able to predict the correct pressures on all of the mesh levels. There are spurious
pressure spikes around triangle cut cells. These spikes are reduced as the mesh resolution is increased.

Figure 15 presents the skin frictions along the bump. The SA analytical wall function matches the
CFL3D solution well even though it assumes no pressure gradient. As the mesh resolution is increased
the skin friction approaches the expected profile. The ODE wall function follows the general trend
but is noisy. Removing the x-momentum source term from the ODE smooths these skin frictions. This
reinforces the assessment that the wall function methods with no pressure dependence are able to generate
smooth skin frictions.

5 Conclusion
In this paper we developed a Newton–Krylov solver for Viscous Aerodynamic Cartesian Cut cells (VACC).
This Newton solver allowed us to prototype new wall function and wall model scheme for solving the
high Reynolds number RANS-SA equations. We tested three separate wall functions and wall model
developed by Ursachi et al. [16].

Each approach showed promise when dealing with the rapidly changing velocity profile near the wall.
However, the interior viscous flux routine common to all methods broke down in the cut cells. Before
providing a final assessment between all of the methods, the interior viscous flux routine needs to be
reassessed.

The SA analytical wall function is able to hide the oscillations in the pressure because it only depends
on the x-momentum at the forcing point. WMRANS and the ODE wall function both suffer from the
oscillating pressure resulting in noisy skin frictions. Future work will be focused on addressing the issues
present in this viscous flux scheme in and around cut cells.

References
[1] A. Jameson, L. Martinelli, and N. A. Pierce. Optimum aerodynamic design using the Navier–Stokes

equations. Theoretical and Computational Fluid Dynamics, 10(1–4):213–237, 1998.
[2] W. K. Anderson and V. Venkatakrishnan. Aerodynamic design optimization on unstructured grids

with a continuous adjoint formulation. Computers and Fluids, 28(4):443–480, 1999.

16

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Rex

0.8

0.6

0.4

0.2

0.0

0.2

0.4

c p

CFL3D
L3 SA
L2 SA
L1 SA

(a) SA Analytical Wall Function

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Rex

0.8

0.6

0.4

0.2

0.0

0.2

0.4

c p

CFL3D
L3 ODE
L2 ODE
L1 ODE

(b) ODE Wall Function

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Rex

0.8

0.6

0.4

0.2

0.0

0.2

0.4

c p

CFL3D
L3 ODE_NO_S
L2 ODE_NO_S
L1 ODE_NO_S

(c) ODE Wall Function with no x-momentum source terms

Figure 14: The pressure coefficients for the 2D bump case. The pressure matches the CFL3D solution
well on all levels of meshes. However, the pressure oscillations are evident around this solution.

17

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Rex

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

c f

CFL3D
L3 SA
L2 SA
L1 SA

(a) SA Analytical Wall Function

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Rex

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

c f

CFL3D
L3 ODE
L2 ODE
L1 ODE

(b) ODE Wall Function

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Rex

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

c f

CFL3D
L3 ODE_NO_S
L2 ODE_NO_S
L1 ODE_NO_S

(c) ODE Wall Function with no x-momentum source terms

Figure 15: The skin frictions for the 2D bump case. The pressure follows the CFL3D solutions well.
Each wall function exhibits convergence towards the expected solution as the mesh is refined. The effect
of the pressure oscillations in the solution are clear in the ODE. Removing the x-momentum source term
smooths the ODE result.

18

 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

[3] Eric J. Nielsen and W. Kyle Anderson. Aerodynamic design optimization on unstructured meshes
using the Navier–Stokes equations. AIAA Journal, 37(11):1411–1419, 1999.

[4] A. Jameson, L. Martinelli, J. J. Alonso, J. C. Vassberg, and J. Reuther. Computational Fluid
Dynamics for the 21st Century, chapter Perspectives on Simulation Based Aerodynamic Design,
pages 135–178. Springer, Berlin, Heidelberg, 2001.

[5] Joaquim R. R. A. Martins. Aerodynamic design optimization: Challenges and perspectives. Com-
puters & Fluids, 239:105391, May 2022.

[6] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. Mavriplis. CFD
vision 2030 study: A path to revolutionary computational aerosciences. Technical Report CR–2014-
218178, NASA, March 2014.

[7] Michael J. Aftosmis. Lecture notes in solution adaptive Cartesian grid methods for aerodynamic
flows with complex geometries. VKI Lecture Series, 1997.

[8] Michael J. Aftosmis, Marsha J. Berger, and John E. Melton. Robust and efficient Cartesian mesh
generation for component-based geometry. AIAA Journal, 36(6), June 1998.

[9] William J Coirier and Kenneth G Powell. Solution-adaptive Cartesian cell approach for viscous and
inviscid flows. AIAA Journal, 34(5):938–945, 1996.

[10] Hongwu Zhao, Patrick Hu, Ramji Kamakoti, Nagendra Dittakavi, Michael Aftosmis, David Mar-
shall, Liping Xue, Kan Ni, and Shaolin Mao. Towards efficient viscous modeling based on Cartesian
methods for automated flow simulation. In 48th AIAA Aerospace Sciences Meeting Including the
New Horizons Forum and Aerospace Exposition, page 1472, 2010.

[11] Tao Ye, Rajat Mittal, HS Udaykumar, and Wei Shyy. An accurate Cartesian grid method for
viscous incompressible flows with complex immersed boundaries. Journal of computational physics,
156(2):209–240, 1999.

[12] Marsha Berger and Michael Aftosmis. Progress towards a Cartesian cut-cell method for viscous
compressible flow. In 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum
and Aerospace Exposition, page 1301, 2012.

[13] Francesco Capizzano. Turbulent wall model for immersed boundary methods. AIAA Journal,
49(11):2367–2381, 2011.

[14] Alex Kleb, Krzysztof J. Fidkowski, and Joaquim R. R. A. Martins. Development of a Cartesian
cut-cell solver for viscous flows. In AIAA SciTech Forum, January 2023.

[15] Marsha J Berger and Michael J Aftosmis. An ODE-based wall model for turbulent flow simulations.
AIAA Journal, 56(2):700–714, 2018.

[16] Carmen-Ioana Ursachi, Steven R Allmaras, David L Darmofal, and Marshall C Galbraith. Stress-
equivalent Spalart–Allmaras wall model with local boundary conditions for reynolds-averaged
navier–stokes. AIAA Journal, pages 1–17, 2024.

[17] Alex Kleb, Krzysztof J. Fidkowski, and Joaquim R. R. A. Martins. Extension of a viscous cartesian
cut-cell solver to the compressible RANS equations. In AIAA Aviation Forum, San Diego, CA, June
2023.

[18] Marco Ceze and Krzysztof Fidkowski. Pseudo-transient continuation, solution update methods, and
CFL strategies for DG discretizations of the RANS-SA equations. In 21st AIAA Computational
Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences. American Institute of
Aeronautics and Astronautics, June 2013.

[19] Mohagna J Pandya, Boris Diskin, James L Thomas, and Neal T Frink. Improved convergence and
robustness of USM3D solutions on mixed-element grids. AIAA Journal, 54(9):2589–2610, 2016.

[20] Anil Yildirim, Gaetan K. W. Kenway, Charles A. Mader, and Joaquim R. R. A. Martins. A Jacobian-
free approximate Newton–Krylov startup strategy for RANS simulations. Journal of Computational
Physics, 397:108741, November 2019.

[21] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, January 2003.

[22] Peter N. Brown and Youcef Saad. Hybrid krylov methods for nonlinear systems of equations. SIAM
Journal on Scientific and Statistical Computing, 11(3):450–481, May 1990.

[23] Masayuki Yano and David L Darmofal. An optimization-based framework for anisotropic simplex
mesh adaptation. Journal of Computational Physics, 231(22):7626–7649, 2012.

[24] Daniel Ibanez, Nicolas Barral, Joshua Krakos, Adrien Loseille, Todd Michal, and Mike Park. First
benchmark of the unstructured grid adaptation working group. Procedia engineering, 203:154–166,
2017.

[25] Christopher Rumsey. NASA turbulence modeling resource. https://turbmodels.larc.nasa.gov,
2019. Accessed: 2019-03-27.

19

https://turbmodels.larc.nasa.gov

