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Abstract: Direct numerical simulations (DNSs) of three-dimensional cylindrical release gravity
currents in a linearly stratified ambient at a Reynolds number of Re = 3450 are presented. The
investigation focuses on examining the influence of ambient stratification on the dynamics and
energy exchange of cylindrical gravity currents across a range of stratification strengths from 0
to 0.8. With increasing stratification strength, the available potential energy (Ea) within the
gravity current decreases, resulting in a less energetic flow, particularly notable in strongly stratified
cases (S = 0.8). During the slumping phase, Kelvin-Helmholtz billows play a crucial role in
stirring the heavy fluid and causing irreversible mixing with the ambient fluid. The available
potential energy density, Ea, provides spatial maps of local contributions to Ea, offering insights
into the interaction between the Kelvin-Helmholtz billows and the current head. This interaction
illustrates that increased stratification leads to reduced turbulence and lower available potential
energy. Predominantly, significant energy exchanges occur primarily at the top of the billows, with
a gradual decrease observed as ambient stratification strength increases.

Keywords: Direct Numerical Simulations, Cylindrical Gravity Current, Stratification, Energy
Budget, Mixing, Local Stirring.

1 Introduction
Gravity currents, also referred to as density currents, are a horizontal intrusion of different density ρc
into an ambient fluid. Gravity currents are observed in many naturally occurring phenomena such as
sandstorms [1], powder-snow avalanches [2], and bushfires [3]. Comprehensive reviews of gravity currents
in geophysical flows, laboratory experiments, and numerical simulations are given in [4] and [5].

The dynamics of an initially stationary fluid with density ρc which is then released into a surrounding
medium with density, ρ0 is examined. The heavy fluid collapses and leads to an intrusion of fluid with
a distinct head region. Extensive research has been conducted on the dynamics of gravity currents
in both (two-) three-dimensional (3-D) planar and (axisymmetric) cylindrical configurations (without
any stratification in the ambient fluid). This research utilises both experimental methods [6, 7, 8] and
numerical simulations [9, 10, 11, 12] approaches. These studies have unveiled four distinct stages in
the evolution of the gravity current. Initially, after the release of the dense fluid, the gravity current
experiences an acceleration phase (the velocity increases from zero to its maximum), during which the
gravitational potential energy of the dense fluid is converted into kinetic energy. Once the front velocity
reaches its peak, the acceleration phase is succeeded by the slumping phase, characterized by a constant
front height and speed.

Following this, the gravity current transitions into the self-similar inertial phase, where the buoyancy
force is balanced by the inertial force. Finally, the gravity current enters the viscous phase, in which the
viscous force becomes dominant over the buoyancy force. Throughout the inertial and viscous phases,
the front velocity of the gravity current decreases according to a power law relationship. It is worth
noting that a planar current propagates along a specific direction, where the planform area (the area
covered by the gravity current on a horizontal plane) increases linearly with the front location. However,
a cylindrical current propagates radially leading to a quadratic increase in the planform area [10]. The
diverse characteristics and spreading rates between these two cases give rise to distinct dynamics in
gravity currents, influencing their mixing properties.
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The presence of stratification in the ambient can significantly alter the propagation and behaviour
of gravity currents. Additionally, the presence of stratification leads to the generation of internal waves.
The specific layer through which the gravity current propagates depends on the relative strength of
the current (ρ∗c − ρ∗0) and the ambient stratification (ρ∗b − ρ∗0) ([13, 14]) where ρ∗b , ρ

∗
0 and ρ∗c are the

dimensional density at the bottom of the domain, top of the domain and the dense fluid respectively. As
a result, numerous experimental and numerical investigations have been conducted to explore the impact
of stratification on the dynamics of gravity current. In this regard, Maxworthy et al. [13] conducted a
comprehensive investigation, utilising both experimental and numerical methodologies to investigate the
correlation between the internal Froude number of the gravity current and stratification S in the ambient
and

S =
ρ∗b − ρ∗0
ρ∗c − ρ∗0

. (1)

The flow regime of the gravity current flow is determined by the Froude number based on the buoyancy
frequency which is a dimensionless parameter defined as the ratio of the inertial forces relative to the
gravitational forces, i.e. Fr = u∗

f,mean/N
∗H∗, where u∗

f,mean is the mean front velocity in the slumping
phase, N∗2 = (g∗/ρ∗0)(−dρ∗/dz∗) = g∗(ρ∗b − ρ∗0)/ρ

∗
0H

∗ is the buoyancy frequency, g∗ is the gravitational
acceleration, ρ∗ is the dimensional fluid density, z∗ is the vertical coordinate and H∗ is the depth of the
domain.

Additionally, they presented data of the critical speed, which is defined relative to the linear, mode-
one, long internal gravity wave, N∗H∗/π, as well as the location at which the first significant interaction
between the wave and the nose of the current was observed. Note that in this manuscript, variables with
asterisks (∗) denote dimensional variables. For the subcritical gravity current (Fr < 1/π), the internal
gravity wave travels faster than the current, whereas for the supercritical gravity current (Fr > 1/π),
the gravity current travels faster than the internal gravity wave.

Early studies concerning the energy budget of gravity currents propagating into an unstratified am-
bient were carried out by Necker et al. [15] and Birman et al. [16] using a high-resolution numerical code.
Necker et al. [15] conducted a comprehensive investigation into the energy budget and mixing behavior
of a 3-D, Boussinesq particle-driven gravity current in an unstratified ambient. However, it is noteworthy
that the focus of their study differs from the present study. Their finding revealed that approximately
40% of the initial potential energy in the system is ‘lost’ due to particle settling, rendering it unavailable
for convective transport and mixing. The particle settling introduces additional dissipative losses in the
flow and this a phenomenon not observed in the density-driven gravity currents examined here.

On the other hand, Birman et al. [16] analysed the energy budget of a two-dimensional (2-D), non-
Boussinesq, lock exchange flow in an unstratified ambient using spectral and compact finite-difference
methods. They reported an increase in the rate of conversion of potential energy to kinetic energy with
decreasing density ratio γ = ρ0/ρc. Ungarish and Huppert [17, 18] conducted a study investigating
the energy exchange of a 2-D planar and an axisymmetric current at high Reynolds numbers, released
from a lock and propagating over a horizontal boundary in both unstratified and linearly stratified
ambient. They employed both the shallow-water model and Navier-Stokes finite difference simulations
and obtained reasonable agreement in the energy changes of the current between the two approaches.
In the case of the axisymmetric current, the energy exchange during the inertial phase was accurately
captured using the shallow-water analysis, neglecting the motion in the stratified ambient. The study
revealed that stratification enhances the accumulation of potential energy in the ambient and reduces
the dissipation of the two-fluid system.

Dai et al. [14] conducted experimental and numerical studies on both 2- and 3-D planar release gravity
currents in a linearly stratified ambient with varying stratification strength. The energy budgets of the
simulations were evaluated by subcritical and supercritical planar gravity currents propagating into a
linearly stratified ambient. In the subcritical case, all the energy components showed good agreement
between the 2- and 3-D simulations, except for the dissipation rate. For the supercritical case, the 2-D
simulations accurately captured the kinetic energy of the current and the potential energy of the ambient
are captured but underpredicted the dissipation rate. However, the kinetic energy of the ambient and the
potential energy of the current were overpredicted, while the dissipation rate was underpredicted by the
2-D simulations. The discrepancy between the 2- and 3-D simulations for the supercritical case increased
dramatically with increasing stratification strength, highlighting the need for cautious interpretation. In
conclusion, Dai et al. [14] reported that stratification hinders the decay of the total mechanical energy
and enhances the accumulation of potential energy in the stratified ambient, which is consistent with the
findings of Ungarish and Huppert [17, 18].

Recently, Lam et al. [19] conducted 3-D simulations of cylindrical gravity currents propagating into
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Figure 1: Sketch of the computational domain for the 3-D simulation. The streamwise, spanwise and
wall-normal directions are represented by x, y and z, respectively. The cylindrical region of heavy fluid
located in the centre of the domain has a density of ρ∗c . The heavy and ambient fluid has the same height
as the height of the domain H∗. The density of the ambient ρ∗a(z∗) increases linearly from the top ρ∗0 to
the bottom boundary ρ∗b as indicated by the lighter grey shading and the ρ∗a(z

∗) shown on the top left
wall.

the stratified ambient fluid with stratification strength that was varied from 0 to 0.8. This analysis
aimed to investigate the mixing behaviour of a fully cylindrical gravity current in a stratified ambient at
a moderate Reynolds number, employing the mechanical framework proposed by Winters et al. [20]. The
study unveiled a decrease in both kinetic energy and available potential energy as the current transitioned
into a self-similar regime. Notably, both the total potential energy and background potential energy in
the stratified cases surpassed those in the unstratified case, attributed to the stratification arrangement
in the ambient, which deviates from its equilibrium stable arrangement. During the slumping phase,
the irreversible mixing rate was higher for the unstratified case compared to the stratified cases. The
results showed the significant role of Kelvin-Helmholtz (K-H) billows in mixing, responsible for stirring
the heavy fluid into the current and permanently mixing it with the ambient fluid. In the unstratified
case, the flow exhibited higher turbulence compared to stratified cases, with larger K-H billows and a
higher local Reynolds number during the slumping phase.

The literature reports on the energy budget of both 2-D and 3-D planar, as well as axisymmetric and
cylindrical gravity currents propagating in both unstratified and linearly stratified ambient conditions.
While analysing the energy budget aids in understanding the energy exchange between kinetic energy
and available potential energy, providing what is known as ‘global’ statistics, such metrics do not offer
insights into the specific locations within the gravity current where stirring and mixing occur. These
localised features, termed ‘local’ stirring and mixing, are the primary focus of our investigation, compar-
ing the characteristics of local energy exchange in a cylindrical current. This study is important because
cylindrical currents exhibit different characteristics and dynamics compared to planar currents [10]. Ad-
ditionally, the presence of stratified ambient can significantly influence the propagation of the current,
as indicated in previous studies [21, 22, 23, 14, 24, 25, 26, 27].

This study systematically investigates the effects of stratification strength, S, on the ‘local’ energy
exchange of cylindrical gravity current flow on the horizontal plane, based on the height of the domain
and the velocity scale (see equation 7a), at a moderate Reynolds number Re = 3450. The choice of this
Reynolds number is based on the study conducted by [10], who performed 3-D simulations of cylindrical
gravity currents in an unstratified ambient. We describe the formulation of the problem in § 2. In § 3
and 4, we outline the energy budgets and available potential energy density frameworks used to quantify
‘global’ and ‘local’ energy exchange. The quantitative results are presented in § 5. Finally, conclusions
are drawn in § 6.

2 Computational setup
Figure 1 shows the initial configuration of full-depth cylindrical-release gravity currents in a linearly
stratified ambient with S = 0.5. The streamwise, spanwise and wall-normal directions are represented
by x, y and z, respectively. The computational domain is a square prism with Lx = Ly = 30. At time
t = 0, a cylindrical lock with a unit radius (r0) and height H = 1, containing heavy fluid with density
ρc is positioned at the centre of the computational domain. The density of the ambient (ρa) linearly
increases from ρ0 at the top to ρb at the bottom, with ρc > ρb. In the limit of ρb → ρ0 and S → ∞, this
becomes the ‘classic’ case of a gravity current propagating into a homogeneous ambient.
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2.1 Numerical method
The 3-D, cylindrical release gravity currents have been simulated using Nek5000, a spectral element,
incompressible flow solver [28] with the Boussinesq approximation used to approximate the effects of
gravity. Nek5000 has been widely used in various fields [29, 30, 31] due to its high accuracy and scalability
in simulating complex flow phenomena. It is hence assumed that the density difference between two fluids
is less than 5% [32] to neglect the influence of density differences in the inertial and diffusion terms and
retain only in the buoyancy term [33, 34]. The non-dimensional governing equations employed in the
study take the form

∂uk

∂xk
= 0 , (2)

∂ui

∂t
+ uk

∂ui

∂xk
= ρegi −

∂p

∂xi
+

1

Re

∂2ui

∂xk∂xk
, (3)

∂ρ

∂t
+ uk

∂ρ

∂xk
=

1

ReSc

∂2ρ

∂xk∂xk
, (4)

∂C

∂t
+ uk

∂C

∂xk
=

1

ReSc

∂2C

∂xk∂xk
, (5)

where ρ is the density of the fluid, ui is the velocity for 3-D flow, p is pressure, egi is the unit vector
in the direction of gravity and C is the concentration of passive scalar, respectively. The dimensionless
density, ρ is defined as

ρ =
ρ∗ − ρ∗0
ρ∗c − ρ∗0

(6)

where the symbols ρ∗, ρ∗0, and ρ∗c with asterisks are the dimensional density of the local, top of the
domain and heavy fluid respectively. The tensor notation in equations 2− 4 utilises subscripts i and k,
where i represents an unrepeated index (also called a free index) that can take on values i = 1, 2, 3, and
k represents a repeated index (also known as a dummy index) that signifies a summation over k = 1, 2, 3.
The value of ρ is bounded between 0 and 1 if S < 1. The Schmidt number is Sc = ν∗/κ∗ (where ν∗ is
the kinematic viscosity and κ∗ is the molecular diffusivity). Although saline liquid, which is typically
used in experiments, has Sc = 700, it is found that when Sc is in the order of 1 or larger, there is a
weak scaling with the dynamics of the gravity current that does not significantly affect the bulk flow
results [35, 15, 10, 36, 37]. It is common practice to set the Schmidt number to unity in numerical
simulations of gravity currents, to ensure numerical stability. Therefore, Sc = 1 is used in current
simulations.

At the bottom (z = 0) for the cylindrical release, a no-slip boundary condition is employed, while a
slip, impermeable symmetry boundary condition is applied at the top of the domain (z = H) and vertical
side walls (x = [−Lx/2, Lx/2] and y = [−Ly/2, Ly/2]) for the cylindrical release. A zero wall-normal
gradient is set for all boundaries for the density field.

The height of the domain H∗ is taken as the length scale. The velocity scale, U∗, time scale, T ∗ and
the Reynolds number, Re are defined as

U∗ =
√

g′H∗, (7a)

T ∗ =
H∗

U∗ , (7b)

Re =
U∗H∗

ν∗
, (7c)

where g′ = g∗(ρ∗c − ρ∗0)/ρ
∗
0 is the reduced gravity and g∗ is the gravitational acceleration acting in the

negative z direction. In the ambient, the dimensionless density at the bottom is ρb = (ρ∗b−ρ∗0)/(ρ
∗
c−ρ∗0) =

S where ρ∗b is the density at the bottom of the ambient and S is the magnitude of the stratification.
The dimensionless density in the ambient ρa varies linearly with wall-normal height z from ρa = ρb =

S (where ρa = (ρ∗a−ρ∗0)/(ρ
∗
c −ρ∗0) and ρ∗a is density in the ambient) at the bottom (z = 0) to ρa = ρ0 = 0

at the top (z = 1) and
ρa(z) = S(1− z), (8)

We systematically investigated the local energy exchange for cylindrical gravity currents propagat-
ing in an unstratified ambient at a moderate Reynolds number of Re = 3450. Subsequently, three
stratification strengths of S = 0.2, 0.5, and 0.8 were considered and simulated to explore the effect of
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Figure 2: A slice of the mesh for (a) x − z plane with −2 ⩽ x ⩽ 2 at y = 0. The black lines denote
the edges of the macro-elements and the grey lines are the GLL nodes within each macro-element. The
details of a micro-element are highlighted in the yellow region in (a), as shown in (b).

stratification on the local energy exchange of the cylindrical gravity current. The number of spectral
elements employed for cylindrical release simulations are Nx × Ny × Nz = 190 × 190 × 15. The grid
distribution within the spectral element follows the Gauss–Legendre–Lobatto (GLL) grid spacing. A
7th-order polynomial is used in this study and the total number of unique grid points is approximately
1.9× 108 grid points. Grid stretching (geometrical progression with power coefficient of 1.05) is applied
along the wall-normal direction (z) where the grid size at the bottom part is denser than at the top.
The topology of the meshes along the x − z plane is shown in Figure 2. The computational grid has a
grid spacing of 0.0033 ⩽ ∆x = ∆y ⩽ 0.0332. The grid spacing to Kolmogorov scale ratio, ∆l/η (where
∆l = (∆x∆y∆z)1/3 and η is the Kolmogorov microscale) is calculated at different instantaneous time
and is always less than 10. This is more conservative that than the ∆l/η ≈ 16 recommended by [38] who
studied the grid convergence characteristics of spectral element solvers. Therefore, we have ensured that
our grid resolution is sufficient to resolve all of the turbulent length scales and also meet the requirement
of ∆x = ∆y ≈ (ReSc)−1/2 where Sc = 1, see [35, 16, 37]. A variable time step is used to ensure that
the Courant number is always less than 0.5.

3 Energy budgets
The energy budget framework proposed by Winters et al. [20] is based on the distinction between the
adiabatic processes, which allow alterations in initial potential energy without involving heat or mass
exchange, and diabatic processes [39]. This approach is independent of distinction between the volume
of heavy and ambient fluid, thereby obviating the need to define any interface between the two. This
method has been employed in previous studies [40, 41, 42] to analyse ‘global’ irreversible mixing in
stratified flow.

The equation for the time derivative of the kinetic energy (Ek) can be obtained by multiplying the
momentum equation (3) by ui, and has the expression

D

Dt

(
1

2
uiui

)
= − ∂

∂xi
(pui) +

2

Re

∂

∂xj
(sijui)−

2

Re
sijsij − ρu3 , (9)

where D/Dt denotes the material or convective derivative, sij is the strain rate tensor where sij =
1
2 (∂ui/∂xj + ∂uj/∂xi) and u3 is the velocity component in the z direction. The first two terms on the
right-hand side of equation (9) are divergence terms, which vanish after integration over the flow domain
Ω [15]. Integration of equation (9) over the entire flow domain Ω provides the temporal evolution of the
total kinetic energy Ek,

Ėk =
dEk

dt
= − 2

Re

∫
Ω

sijsij dV −
∫
Ω

ρu3 dV , (10)

Ek(t) =
1

2

∫
Ω

uiui dV . (11)

The potential energy in the system is defined as,

Ep(t) =

∫
Ω

ρz dV . (12)
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We consider the changes in potential energy of the gravity current flow in a closed system and the time
derivative of the potential energy can be determined using equations (4) and (12) [20, 43]

Ėp =
dEp

dt
=

∫
Ω

ρu3 dV −
∫
Ω

Dρ

Dt
z dV . (13)

The first term on the right-hand side of (13) is the vertical buoyancy flux which is reversible rate of
exchange with potential energy (Ek ⇋ Ep) and the second term represents a conversion of internal
energy to background potential energy due to irreversible diffusion in the density field [20, 14]. Winters
et al. referred the second term on the right-hand side of equation (13) as κgA(∆ρ) where ∆ρ is the
spatial averaging of the density difference between top (ρ(z = H, t)) and bottom (ρ(z = 0, t)) over the
x− z plane, and A = LxLy.

The first term on the right-hand side of equation (10) represents the local rate of dissipation ϵ and
the time integral of dissipation Ed has an expression

Ed(t) =

∫ t

0

ϵ(τ) dτ, ϵ =
2

Re

∫
Ω

sijsij dV . (14)

The summation of equations (10) and (13) gives the change of total mechanical energy with time,
K̇ + Ėp +

∫
Ω
(Dρ/Dt)z dV = −ϵ. In the study by [16], the effect of diffusion in the density field is

neglected due to its insignificant role in flows with high Reynolds numbers, where density diffusion can
be disregarded in turbulent flows. Integrating the change of total mechanical energy with respect to time
yields Ek +Ep+Ed = const. = Ek(0)+Ep(0) (where Ek(0) is the initial kinetic energy and Ep(0) is the
initial potential energy). This essentially represents an energy balance statement during the propagation
of the gravity current.

3.1 Partitioning the potential energy
The potential energy of the system can be decomposed into background potential energy Eb and available
potential energy Ea. According to Winters et al. [20], changes in the potential energy of the background
state Eb are direct measure of the energy expended in mixing the fluid. In this context, the constant-
density volumes are rearranged, with lighter volumes placed on top of the heavier volumes. The density
field undergoes adiabatic rearrangement where the density of the fluid, ρ, increases from the top to the
bottom of the domain. This results in redistributed fluid particles within the domain forming a perfectly
stable horizontally stratified configuration [20, 42] (see Figure 3.) Adiabatic processes can modify the
potential energy but they do not alter the background state ρ̃. Only diabatic mixing can induce changes
in the background state in closed systems. The background potential energy is the minimum potential
energy attainable through an adiabatic redistribution of ρ and is defined as

Eb(t) =

∫
Ω

ρz̃ dV , (15)

where z̃(x, t) is the vertical position in the reference state of the fluid parcel at position (x, t).
As discussed in [20], the one-dimensional reference profile is defined by

z̃(x, t) =
1

A

∫
H[ρ(x′, t)− ρ(x, t)] dV ′ , (16)

where H is the Heaviside step function satisfying

H(ρ(x, t)− ρ0(x, t)) =


0, ρ(x, t) < ρ(x0, t)

1

2
, ρ(x, t) = ρ(x0, t)

1, ρ(x, t) > ρ(x0, t) .

(17)

The variable z̃(x, t) interpreted as a statically stable ordering of the fluid elements, with z̃(x1, t) < z̃(x2, t)
when ρ(x1, t) > ρ(x2, t). It maintains the same value across all points on a given isopycnal surface, thus
z̃ can be considered a unique function of density ρ [20, 44, 45].

The difference between the potential energy and the background potential energy, namely, the avail-
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(a)

(b)

Figure 3: 2-D contour of the azimuthal-averaged density field for the case with S = 0.5 in (a) original
state and (b) rearranged density field with minimum potential energy state. The heavy fluid is coloured
yellow and the density of the ambient ρa(z) increases linearly from the top ρ0 to the bottom boundary
ρb as indicated by the blue shading.

able potential energy, is expressed as

Ea(t) =

∫
Ω

ρ(z − z̃) dV = Ep(t)− Eb(t) . (18)

The available potential energy is the potential energy released in an adiabatic transition from ρ(z) to ρ(z̃)
without altering the probability density function of density [20] and is the fraction of potential energy
that can be converted to kinetic energy.

4 Available potential energy density
The mechanical energy framework discussed in the previous section provides insight into the overall
‘global’ energy exchange for cylindrical gravity currents propagating in both unstratified and stratified
ambient conditions. However, it does not address the specific locations within the gravity current where
the energy exchange occurs, referred to as ‘local’ energy exchange. The focus of this paper is on the
‘local’ stirring within the cylindrical release gravity current, where the local energy is available to be
converted to kinetic energy (or vice versa). It is important to note that the available potential energy
density is not directly related to local ‘mixing,’ and the stirring process may or may not result in mixing
the flow.

Winters and Barkan [46] demonstrated the use of available potential energy density Ea to construct
spatial maps of local contributions to Ea by conducting direct numerical simulations (DNSs) of density
stratified flows. The explicit integration of the available potential energy density, Ea to Ea as provided
by Winters et al. [20], for Boussinesq fluid flows can be found in the works by Holliday and Mcintyre [47],
and Roullet and Klein [48], where

Ea(t) =

∫
Ea(x, t) dV , (19a)

Ea(x, t) ⩾ 0 ∀x, t . (19b)

The available potential energy density is defined as,

Ea(x, t) ≡ (z − z̃)(ρ(x, t)− ρ(z, z̃)) , (20a)

ρ(z, z̃) =
1

z − z̃

∫ z

z̃

ρ(z̃′) dz̃′ , (20b)
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and equation (19a) can then be rewritten as,

Ea =

∫
(z − z̃)ρ(x, t) dV −

∫ ∫ z

z̃

ρ(z̃′) dz̃′ dV . (21)

Each parcel with a volume dV = dxdydz is initially ‘flattened’ to a size A dz̃. These flattened parcels,
with a thickness of dz̃ = dV/A ≪ dz, are then stacked in order of descending density (see Figure 3 (b)).
In this configuration, (zi − z̃) > 0, and the average density of the reference profile over the range of
heights, ρ(zi, z̃), is greater than z̃(ρi) and thus must be less than ρi. This results in the product in (20a)
being positive for all parcels. A detailed explanation of parcel relocation from zi to z̃i in (18) and the
mapping of three-dimensional energy equivalents to one-dimensional is discussed in [46].

5 Results and discussion
The discussion will begin with an examination of the propagation and ‘global’ energy exchange of the
cylindrical gravity current, highlighting the impact of stratification strength on its dynamics. The me-
chanical energy framework introduced by Winters et al. [20] will be utilised to calculate the ‘global’
energy exchange. The focus will be on the available potential energy, which represents the potential
energy released in an adiabatic transition from ρ(z) to ρ(z̃) without altering the probability density
function of density. This energy fraction indicates the portion of potential energy that can be converted
to kinetic energy.

In the subsequent section, the available potential energy density, Ea, as introduced by Winters and
Barkan [46], will be employed to construct spatial maps of local contributions to Ea. This approach will
allow for exploration of the reversible stirring process (Ek ⇌ Ea) within the cylindrical gravity current
propagating in stratified ambient. It should be emphasised that the mixing discussed in the sections
below referred to as ‘global’ mixing.

5.1 Propagation and ‘global’ energy exchange of cylindrical gravity current
with different stratification

The time series of the propagation of the cylindrical gravity current in both S = 0 (left column) and
0.5 (right column) can be visualised in Figure 4. The heavy fluid is coloured yellow and the stratified
ambient S = 0 is represented by blue, and linearly stratified ambient is indicated by blue shading. The
solid black lines in Figure 4(f − j) represent the isopycnals. The red vertical lines indicate the front
location of the current and white arrows represent the Kelvin-Helmholtz billows.

At an early time (t = 1), the heavy fluid slumps into the ambient fluid, showing no significant
difference between the cases. During the slumping phase, between 3 < t < 5, K-H billows form behind
the current head at t = 3 for the unstratified case, while for S = 0.5, these billows form at t = 5. At
this time (t = 5), the current in the unstratified case travels a significantly greater distance than in the
S = 0.5 case. This indicates that stratification hinders the propagation of the gravity current, delays
vortex formation, and results in less turbulence [14, 26].

Interestingly, at t = 7 and t = 9 (see Figure 4(i) and (j)), when the current is in the inertial phase,
the S = 0.5 case exhibits a similar density contour to the unstratified case at t = 5 and t = 7 (refer
to Figure 4(c) and (d)), indicating that the development of the Kelvin-Helmholtz billows is delayed by
approximately 2 time units. At t = 9, the merging of the K-H billows with the head of the gravity current
is observed for the unstratified case. However, for S = 0.5, the K-H billows do not merge with the head
(not shown here) but begin to separate from it. This occurs because the gravity current transitions
into subcritical flow, where the internal gravity waves separate from the current head, move upstream
faster than the current, and prevent the merging of the billows with the head [13, 26]. These figures
illustrate the contribution of the K-H billows to the evolution of the available potential energy Ea and
the background potential energy Eb, which will be discussed in the following sections.

Examining the energy budget of the cylindrical current in both unstratified and stratified ambient
conditions demonstrates the conversion process from available potential energy to kinetic energy. A
comparison is made between the unstratified case and the stratified cases with S = 0.2, 0.5, and 0.8,
which highlights the impact of stratification on the energy exchange of the cylindrical gravity current.
The initial available potential energy, Ea(0) is the maximum energy available for conversion to kinetic
energy; therefore, all potential energy terms and kinetic energy are normalised with the initial available
potential energy.
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(c)

(d)
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Figure 4: Time evolution of the azimuthal-averaged gravity current in the stratified ambient with S = 0
(left column) and 0.5 (right column). Contours are shown with time intervals of 2 time units. The heavy
fluid is coloured yellow and the density of the ambient ρa(z) increases linearly from the top ρ0 to the
bottom boundary ρb as indicated by the blue shading. The solid black line represents the isopycnals.
The red vertical lines indicate the front position of the gravity current. The white arrows represent the
Kelvin-Helmholtz billows behind the gravity current head.

The temporal evolution of front velocity, uf , with varying S and the non-dimensional potential energy
budget of the gravity current propagating in the unstratified ambient (S = 0) at Re = 3450 is illustrated
in Figure 5. The transition of the gravity current for the S = 0 case through different phases is shown
in Figure 5(a). The evolution of the potential energies is depicted in Figure 5(b).

At t = 0, when the fluid is stationary with no kinetic energy, the total energy is stored as potential
energy. The non-dimensional available potential energy, Ea, is approximately 1, indicating that the
potential energy is entirely attributable to the conversion to kinetic energy [39]. The non-dimensional
background potential energy in Figure 5(b) is small but not zero.

During the initial acceleration phase (0 < t ⩽ 2.5) after the heavy fluid is released into the ambient
fluid (see Figure 4(a)), both Ep and Ea decrease rapidly, reaching nearly the same value. Background
potential energy, Eb, remains close to zero, demonstrating the conversion from potential energy to kinetic
energy. This indicates Ep is entirely attributable to the conversion to kinetic energy.

As the current transitions into the slumping phase (2 < t < 5), the speed of the current becomes
nearly constant (refer to Figure 5(a)) and Kelvin-Helmholtz billows form behind the current head. During
this phase, Ea shows a slight increase from a trough (see the black arrow in Figure 5(b)). This indicates
reversible stirring of the heavy fluid into the body of the current and irreversible mixing with the ambient
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?

(a) (b)

Figure 5: The plot of (a) front velocity against time with different S and (b) non-dimensional potential
energies. Total potential energy P , (◦); background potential energy Pb, (□) and available potential
energy Pa, (△). The transition of the current label in (a) is for S = 0 case, IA: initial acceleration and
deceleration; SP: slumping phase; IP: inertial phase and VP: viscous phase. The colours in (a) represent
different stratification strength, , S = 0; , S = 0.2; , S = 0.5 and , S = 0.8.

fluid caused by K-H billows [39] (see Figure 4(b, c)). Although the value of Eb is low, the increase in
Eb reflects the presence of non-zero irreversible mixing, where the trapping of ambient fluid due to K-H
billows alters the potential energy and slightly changes the background potential energy [39].

As the current transitions into the self-similar inertial phase, Ep and Ea continue to decrease until
approximately t ≈ 24, while Eb continues to increase as the current propagates. During this phase,
Ea gradually separates from the curve of Ep, indicating that the variation of Ep is caused more by the
irreversible mixing of fluid elements than by reversible stirring (Ea ⇋ K). This can be seen in Figure
4(d, e)) where the K-H billows are merging with the head of the gravity current, and irreversible mixing
is greater than reversible stirring at the time, 7 ⩽ t ⩽ 9.

At later times (t > 24), the current enters the self-similar viscous phase where the viscous force
dominates the buoyancy force, resulting in a rapid decay of the current’s speed. Interestingly, both Ep

and Ea begin to increase, with Ep growing at a higher rate until the end of the simulation. During
the viscous phase, the increase in Ep is mainly attributed to laminar diffusive processes rather than the
transfer from kinetic energy to available potential energy.

Finally, when t > 40, the propagation of the current becomes negligible as there is insufficient density
difference between the current and ambient at the bottom wall to continue propagating. The increase in
Ea, may be attributed to the presence of fluid with greater density than the ambient density remaining
almost stationary within the tail of the gravity current.

Figure 6(a) and (b) show the temporal evolution of normalized available potential energy, Ea and
kinetic energy, Ek, as a function of time with S varying from 0 to 0.8 at Re = 3450. Kinetic energy is
normalized by the initial available potential energy Ea(0), which the sole source of energy available for
the stirring process.

Initially, the heavy fluid is stationary, and Ep = Ea and Ek = 0. When the simulation starts and the
heavy fluid is released and slumps into the ambient, kinetic energy undergoes a rapid increases owing to
its conversion from available potential energy. In Figure 6(b), all cases exhibit a similar peak normalized
kinetic energy, approximately Ek ≈ 0.65, occurring between 2.6 < t < 3. This suggests that around 65%
of the initial available potential energy Ea(0) is converted to kinetic energy regardless of the stratification
strength of the ambient. It is important to note that Ea(0) increases with increasing S, as reported and
illustrated in Figure 6(e) of [19]. Kinetic energy attains its maximum and Ea reaches a local minimum
concurrently, just before the gravity current transitions into the slumping phase, characterized by the
front velocity reaching an almost constant value.

During the slumping phase, the decreases in Ek and the increase in Ea demonstrate the formation of
Kelvin-Helmholtz billows, which contribute to the reversible stirring of the dense fluid into the body of
the current. Subsequently, as the current transitions into the inertial phase, characterized by a power-
law decay in the front velocity, kinetic energy decreases, resulting in a less energetic current. It is worth
noting that Ek depicts higher values with increasing S, due to normalization with Ea(0) where Ea(0)
decreases with increasing S.
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(a) (b)

Figure 6: The plot of (a) available potential energy and (b) kinetic energy against time with different S.
The colour represents different stratification strength, , S = 0; , S = 0.2; , S = 0.5 and ,
S = 0.8.

In general, both the kinetic energy and available potential energy in the system decrease with increas-
ing S. This observation implies that the potential energy available for conversion into kinetic energy is
influenced by the degree of stratification. This is consistent with the observations reported in [14, 19],
where the stratification in the ambient can hinder the release of potential energy associated with the
current, which aligns with the result of Ea in Figure 6(a).

5.2 ‘Local’ energy exchange: Available potential energy density, Ea

The energy budgets indicate that as stratification strength increases, the potential energy available for
conversion into kinetic energy decreases. During the slumping phase, Kelvin-Helmholtz (K-H) billows
form behind the current head, causing reversible stirring of the dense fluid into the body of the current
and permanent mixing with the ambient fluid. While K-H billows form and interact with the head of the
gravity current in the time range 3 ⩽ t ⩽ 10, this section will focus solely on the ‘local’ energy exchange
(reversible stirring, K ⇋ Ea) during this period for cylindrical gravity currents propagating in a linearly
stratified ambient with varying stratification. Analyzing the spatial distribution of Ea provides insight
into identifying the local contribution of Ea within the gravity current under the effect of stratification.
It is important to note that the volume integral of Ea yields the same Ea as in Figure 6.

Figure 7 illustrates the isosurface of available potential energy density, Ea. The isosurface of density,
ρ = 0.015, is plotted on top of the isosurface of Ea. The azimuthal-averaged density contour is depicted
on the right-hand side. As in Figure 4, the yellow colour represents the heavy fluid, while the unstratified
ambient (S = 0) is represented by blue, and the linearly stratified ambient is indicated by blue shading.
The red solid line represents the front position of the gravity current, and the white arrow indicates the
K-H billows. The solid black line represents the isopycnals.

At t = 3 (refer to Figure 7(a)), the gravity current transitions into the slumping phase, during which
the K-H billows form behind the current head. The value of Ea is significantly higher at the top part of
the billow compared to other regions, indicating that most of the potential energy is concentrated there
and is ready to be converted into kinetic energy through the stirring process. This process draws the
heavy fluid into the head and body of the current and permanently mixes it with the ambient fluid. The
value of Ea gradually decreases to approximately 0.15 in the body of the gravity current. The motion of
the current’s tail is minimal, resulting in the lowest available potential energy (0 < x ⩽ 1), which does
not contribute to the stirring process.

The gravity current begins to transition into the self-similar inertial phase at t ≈ 6. The azimuthal-
averaged density contour shows that the billows behind the current head are significantly larger than
the head itself. At this time, the K-H billows appear to be separated from the head, and the density
within the billows is higher than in the head. Interestingly, Ea is higher in the billows, as shown on the
isosurface of (Ea located on the left-hand side of Figure 7(b). This indicates that most of the available
potential energy is contributed by the K-H billows compared to the vortices within the head. It is also
worth noting that the lobes-and-clefts structures are developing at the front of the gravity current and
appear symmetrical.

As the gravity current continues to propagate, the lobes-and-clefts structures on the advancing front

11



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

can be observed clearly in Figure 7(c). The formation of these lobes and clefts instabilities has been
reported in [49, 35, 11, 50, 26]. At this time, t = 9, the available potential energy density, Ea, within
the head becomes higher than in the billows indicating that the vortices within the head have higher Ea

resulting in dominant stirring. Consequently, the billows behind the current begin to merge with the
head, as shown in Figure 7(c).

@@I
Clefts

@@I Lobes
Ea

K-H billows
@@R

@@R

(a)

(b)

(c)

Figure 7: (Caption next page.)

The isosurface of Ea for cylindrical gravity currents propagating in a stratified ambient with different
S values is shown in Figure 7(d)− (h). For the weakly stratified case, S = 0.2, the isosurface of Ea and
the azimuthal-averaged density contour (see Figure 7(d)−(e)) do not differ significantly compared to the
unstratified case. A similar observation of the merging of K-H billows with the current head is observed
for S = 0.2 at t = 10. It is important to note that although the structures do not differ significantly, the
delayed formation of K-H billows and their merging with the head are observed in the weakly stratified
case, occurring approximately one dimensionless time unit later.

As the stratification strength increases to S = 0.5, the structures of the isosurface of Ea and the
contour of azimuthal-averaged density begin to differ compared to the unstratified case. In this scenario,
the development of the Kelvin-Helmholtz billows (refer to Figure 7(f))is delayed by approximately two
dimensionless time units compared to the unstratified case shown in Figure 7(a). The available potential
energy density within the current head is significantly smaller compared to the S = 0 and S = 0.2 cases.
The radially advancing lobes and clefts of the current become smaller, with the mean wavelength of the
lobes decreasing as the stratification strength increases [26]. The structures behind the current are also
different compared to the S = 0 and S = 0.2 cases, with the tail separating from the current as observed
at r < 1.4 in Figure 7(f).

At a later time, t = 10, as shown in Figure 7(g), the K-H billows do not merge with the current head
but continue to propagate downstream behind it. This is attributed to the effect of stratification, where
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Figure 7: (Caption next page.)

the density difference between the head and the bottom wall is small, resulting in the Ea of the head
being lower than that of the K-H billows. Therefore, the billows do not merge with the current head
as observed for the S = 0 and S = 0.2 cases. Eventually, the propagation of the current in the inertial
phase becomes negligible due to an insufficient density difference between the current and the ambient
at the bottom wall.

Ea

K-H billows
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@@R

(f)

(g)

Figure 7: (Caption next page.)

For the strongly stratified case, S = 0.8, Ea attains the lowest value within the head compared to all
other cases. It is worth noting that the size of the head decreases with increasing S. Similar to the S = 0.5
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case, the tail of the current separates from the current head as the current propagates downstream, as
shown in Figure 7(h). The propagation of the current becomes negligible during the slumping phase and
does not transition into the inertial phase (or viscous phase) due to the insufficient density difference
between the current and the ambient at the bottom wall. Consequently, gravity current flow is negligible
and the behaviour may be closer to that of a strongly nonlinear solitary wave that transports mass [51].
The results of the available potential energy density show good agreement with the energy budgets.

Utilising spatial maps of local contributions to Ea, the primary region of the reversible stirring
process can be identified. The effect of stratification on the energy exchange of the cylindrical gravity
current is explored. With increasing stratification strength, the density difference between the current
head and the bottom wall decreases. Consequently, the speed of the current further decreases, following
a power law of t−1/2 as it transitions into the inertial phase. The local Reynolds number, ReL =
uf,mean(tSP )H/ν for S = 0, 0.2, 0.5 and 0.8 are 1326, 1228, 1071 and 903, respectively. For the case with
S = 0.0(0.8), ReL is approximately 2.5(3.8) times smaller compared to Re fixed in the simulation. As
stratification increases, ReL decreases, leading to lower available potential energy and less turbulent flow.
Strang and Fernando [52], and Peltier and Caulfield [44] have made similar observations, noting that
increasing stratification reduces mixing efficiency because strongly stratified flows are less susceptible to
flow instabilities.

Ea

K-H billows
@@R

(h)

Figure 7: Time evolution of the isosurface of available potential energy density for the case with S =
(a) − (c) 0, (d) − (e) 0.2, (f) − (g) 0.5 and (h) 0.8 at Re = 3450. The isosurface of density (or passive
scalar for the stratified cases), ρ = 0.015 (C = 0.015), is plotted on top of the available potential energy
density. The azimuthal-averaged density contour is plotted on the right-hand side. The white arrow
indicates the Kelvin-Helmholtz billows. The solid black line represents the isopycnals.

6 Conclusion
Direct numerical simulations (DNSs) of three-dimensional cylindrical-release gravity currents in a linearly
stratified ambient were conducted in this study at Re = 3450. The stratification strength of the ambient
fluid was varied from 0 to 0.8. The main objective was to analyze the effect of stratification strength on
the ‘local’ energy exchange of a fully cylindrical gravity current in a stratified ambient at a moderate
Reynolds number. The available potential energy density, Ea, was used to construct spatial maps of local
contributions to available potential energy, Ea, and to evaluate the temporal evolution of the conversion
process from available potential energy to kinetic energy through reversible stirring.

The energy budgets showed that both the kinetic energy and available potential energy of the cylin-
drical gravity current are affected by the ambient stratification. With increasing stratification strength,
K and Ea decrease, resulting in a less energetic current observed for the strongly stratified case, S = 0.8.
This effect is evident from the comparison of the azimuthal-averaged density contours between S = 0 and
S = 0.5, where the propagation of the current is delayed by approximately one dimensionless time unit
and by two dimensionless time units when S increases to 0.8. This phenomenon has also been reported
in previous studies [14, 26, 19].

The investigation into ‘local’ energy exchanges primarily focuses on the slumping phase and the early
stage of the inertial phase, during which the interaction of the Kelvin-Helmholtz billow with the current
head is predominant. As the current transitions into the slumping phase, the available potential energy
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reaches its minimum while the kinetic energy peaks. Concurrently, the formation of the Kelvin-Helmholtz
billow behind the current head occurs. The isosurfaces of Ea indicates that Ea is concentrated at the
top part of the billow, aligning well with the temporal evolution of Ea, where there is a slight increase
from a trough during the slumping phase. With increasing stratification strength, the size of the head
decreases, resulting in smaller K-H billows and a decrease in Ea.

In the inertial phase, the temporal evolution of the cylindrical gravity current behaves differently with
increasing stratification strength. Merging of the K-H billows and the head is observed for unsatisfied and
weakly stratified cases but not in the cases with S ⩾ 0.5. Besides, the tail of the current separated from
the body of the current. Under the effect of stratification, the density difference between the head and
the bottom wall is small, resulting in the Ea of the head being lower than the K-H billow and therefore
the billows do not merge with the current head as observed for S = 0 and 0.2 cases.

The simulations conducted in this study were at a Reynolds number of Re = 3450 which may not
represent the Reynolds number of the gravity current at every time instance. Here, the local Reynolds
number, ReL is calculated using the constant velocity during the slumping phase and ranges from
1300 < ReL < 900. In the inertial phase, the local Reynolds number is lower compared to the slumping
phase due to the decrease in front velocity, with an exponent of −1/2 [26], resulting in a less energetic
current. This effect is evident in the S = 0.8 case, where the propagation of the current becomes slower
and can be negligible during the slumping phase due to the insufficient density difference between the
heavy fluid and the bottom wall.

The use of available potential energy density provides detailed information about the stirring process
occurring within the gravity current, where the major contribution of the energy exchange between K
and Ea is now determined. These findings enhance our understanding of the dynamics of cylindrical
gravity currents in stratified environments, with practical implications for natural phenomena (particle-
laden [15] and multiphase flow [53]) such as the transport and mixing of pollutants and wildfire smoke.
Future research could investigate the impact of varying surface area of the heavy fluid on the mixing
behavior of gravity currents in stratified ambient, offering further insights for real-world applications.
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