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Abstract: The accuracy of airfoil stall prediction largely depends on the simulation of separated flows. 
Numerous data-driven turbulence modeling methods have been proposed to improve the flow 
separation prediction accuracy of the Reynolds-averaged Navier-Stokes method. However, traditional 
machine learning models based on neural networks often lack physical interpretability. In this paper, 
the symbolic regression (SR) method is adopted to establish an analytic expression mapping between 
local flow field variables and the Spalart-Allmaras (SA) model correction factor 𝛽𝛽 to enhance the SA 
model's predictive performance under stall conditions. Field inversion based on the discrete adjoint 
method is used to obtain training data. Moreover, the expression is obtained using symbolic regression. 
The SA model embedded with the 𝛽𝛽 expression is referred to as the SA-SR model, which can be 
integrated into computational fluid dynamics solvers with minimal increase in computational load. The 
generalization capability of the SA-SR model is tested under a variety of different cases, demonstrating 
its ability to accurately predict attached flows while correcting stall flows within a certain range. 
 
Keywords:    Field Inversion, Symbolic Regression, Airfoil Stall, Machine Learning. 
 
1     Introduction 
 

Airfoil stall is a common phenomenon in engineering practice of aerodynamics [1]. It is generally 
caused by flow separation due to large angle of attack (AOA), which results in a significant decrease in 
the lift-to-drag ratio of the airfoil [2]. Since stall is primarily related to the separation of the suction 
surface boundary layer under adverse pressure gradient flow, the key to accurately predicting stall in 
computational fluid dynamics (CFD) is the precise computation of separation under adverse pressure 
gradient [3]. 

Numerous experiments have revealed significant unsteady and three-dimensional effects in 
trailing-edge stall flows [4,5]. These complexities render existing Reynolds-averaged Navier–Stokes 
(RANS) method incapable of producing accurate results [6]. Therefore, many unsteady methods such 
as direct numerical simulation (DNS) and large eddy simulation (LES) have been applied to this 
problem [7,8]. However, considering computational costs, modifying existing RANS turbulence 
models to accurately predict stall remains the most economical approach in engineering 
applications [9]. Following traditional turbulence modeling approaches, modifications can be made to 
turbulence models to address adverse pressure gradient flows [10]. Nevertheless, this task heavily relies 
on the modelers’ experience.  

In recent years, data-driven methods have been widely used to address the poor predictive 
performance of turbulence models in complex flows [11–13]. A notably representative achievement is 
the framework proposed by Duraisamy et al. [14], which combined adjoint-based turbulence model 
uncertainty quantification and machine learning correction, known as the field inversion and machine 
learning (FIML). However, traditional data-driven methods often utilize black-box models like artificial 
neural network (ANN), which lack physical interpretability. This limits the exploration of the physical 
mechanisms for corrections and the manual adjustments. To address these issues, symbolic regression 
(SR) method has been attempted in the process of data-driven turbulence modeling. Previous 
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studies [15,16] have utilized SR method for turbulence modeling to enhance the models’ predictive 
capacity in certain complex flow scenarios. However, most research has primarily focused on correcting 
models within separated shear layers, with relatively limited effective application to problem within 
adverse pressure gradient boundary layers. 

In this paper, similar to the FIML framework proposed by Duraisamy, we add a correction factor 
𝛽𝛽 to the production term of the Spalart-Allmaras (SA) model transport equation. The discrete adjoint 
method is used for flow field inversion under several conditions of the S809 airfoil to obtain the 𝛽𝛽 
dataset. Subsequently, this dataset is fitted using SR to derive an explicit expression of 𝛽𝛽 as a function 
of local flow field variables. Finally, the physical mechanisms of this expression are analyzed, and its 
generalization performance is validated on test cases different from the S809 airfoil. The results 
demonstrate its promising application prospects for addressing airfoil stall issues under adverse pressure 
gradient separation. 
2     Methodology 
 

In this study, the flow field inversion method is utilized to obtain the distribution of correction 
factor. Subsequently, the symbolic regression method is employed to fit the expression of the correction 
factor. 
2.1     Field inversion 

The equation for the Spalart-Allmaras (SA) model constructed by Spalart is as follows [17]: 
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where the 𝑃𝑃  and 𝐷𝐷  are the production and destruction terms, respectively. The research by 

Duraisamy et al. [14] suggested that multiplying a correction factor 𝛽𝛽 in front of the production term 
𝑃𝑃 in Eq. (1) can improve the model’s prediction of separated flows. Thus, Eq. (1) becomes: 
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The distribution of 𝛽𝛽 over the spatial coordinate 𝒙𝒙 can be obtained through the following flow 

field inversion process: 
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 (3) 
The optimization problem in Eq. (3) involves a large number of variables, necessitating the use of 

gradient optimization algorithms. Therefore, the discrete adjoint method [18] is applied in this study to 
reduce computational cost. It decouples the cost of gradient computations from the number of variables. 
In this study, the open-source solver ADflow [19] with secondary development is used for RANS 
equations and adjoint equations calculations. 
2.2     Symbolic regression 

A mapping relationship between the correction factor 𝛽𝛽 and local physical features needs to be 
established to modify the SA model under different cases. Symbolic regression method is utilized to fit 
the expression between the following physical features [11,12,16] and the offset of 𝛽𝛽(i.e., 𝛽𝛽 − 1): 
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The symbolic regression library PySR [20] is used to fit the expression from local physical 
quantities to 𝛽𝛽 − 1, which employs genetic algorithms to optimize the form of expressions. Finally, 
PySR provides the optimal results under different complexities. It is up to the user to choose which to 
adopt based on metrics such as the degree of fit and complexity. 
3     Results and Discussion 
3.1     Field inversion and symbolic regression 

Field inversion is performed on the S809 airfoil under condition of 𝑀𝑀𝑀𝑀 = 0.1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅 = 2 × 106, 
with the objective of determining the spatial distribution of the correction factor 𝛽𝛽 . Firstly, the 
performance of the baseline SA model at various AOA (𝛼𝛼) is tested, and the results in Fig. 1 demonstrate 
its ability to accurately predict 𝐶𝐶𝐿𝐿 in the linear range while failing in stall conditions. The experimental 
results for the 𝐶𝐶𝐿𝐿 are sourced from the Delft University of Technology Low Speed Laboratory [21]. 

 
Fig. 1. Prediction of the 𝑪𝑪𝑳𝑳 for the S809 airfoil by the baseline SA model (𝑴𝑴𝑴𝑴 = 𝟎𝟎.𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑹𝑹𝑹𝑹 = 𝟐𝟐 × 𝟏𝟏𝟏𝟏𝟔𝟔). 

We use the 𝐶𝐶𝐿𝐿 as the QoI and, following the weighting coefficient settings by Yan et al. [13], 
perform field inversion under conditions of 𝛼𝛼 = 8.2° 𝑎𝑎𝑎𝑎𝑎𝑎 14°. Therefore, the objective function for the 
inversion process is shown in Eq.(5). To ensure that the corrections are more likely to occur within the 
adverse pressure gradient boundary layer on the suction surface rather than in the separation bubble, we 
set 𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  as specified in Eq. (6), where 𝑥𝑥 = 1.0 represents the 𝑥𝑥-coordinate of the airfoil’s trailing 
edge. 
 2 2
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After the iterations of the field inversion, the distributions of the correction factor 𝛽𝛽  in the 
inversion flow fields are shown in Fig. 2, where it can be seen that the eddy viscosity on the suction 



 ICCFD12

Twelfth International Conference on        
Computational Fluid Dynamics (ICCFD12), 
Kobe, Japan, July 14-19, 2024 

 

 

4 
 

surface of the airfoil is reduced. As illustrated in Fig. 3, this results in an earlier separation point of the 
flow, thereby enlarging the separation bubble and consequently leading to a decrease in the predicted 
𝐶𝐶𝐿𝐿. 

 
(a) 𝜶𝜶 = 𝟖𝟖.𝟐𝟐°                                                       (b) 𝜶𝜶 = 𝟏𝟏𝟏𝟏° 

Fig. 2. Distribution of 𝜷𝜷 in the inversion results (𝑴𝑴𝑴𝑴 = 𝟎𝟎.𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑹𝑹𝑹𝑹 = 𝟐𝟐 × 𝟏𝟏𝟏𝟏𝟔𝟔). 

 
(a) SA              (b) FI 

Fig. 3. Comparisons of flow fields in the inversion results (𝑴𝑴𝑴𝑴 = 𝟎𝟎.𝟏𝟏,𝑹𝑹𝑹𝑹 = 𝟐𝟐 × 𝟏𝟏𝟏𝟏𝟔𝟔,𝜶𝜶 = 𝟏𝟏𝟏𝟏°). 
Next, explicit expressions will be generated by PySR using the features from Eq. (4) and the 

operators listed in Table 1. After iterations of the genetic algorithm, expressions of varying complexity 
were obtained. Balancing complexity and fitting accuracy, we selected Eq. (7) as the result of symbolic 
regression. 

Table 1. The operators used for symbolic regression. 
Operator Type Operators 

Unary operators exp(𝑥𝑥) , tanh (𝑥𝑥) 
Binary operators 𝑥𝑥 + 𝑦𝑦, 𝑥𝑥 − 𝑦𝑦, 𝑥𝑥 ∗ 𝑦𝑦, 𝑥𝑥/𝑦𝑦 
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An important physical insight is that in the stall flow around the airfoil, the pressure gradient is a 
critical feature. However, Eq. (7) does not include this feature. To ensure that the correction is only 
applied in adverse pressure gradient flows, we refer to Wu's study [16] and add a switch function based 
on the pressure gradient to Eq. (7), modifying it to: 
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In Eq. (8), 𝑆𝑆𝑝𝑝 is referred to as the pressure gradient switch function. It determines whether to 
activate the correction by assessing the value of 𝑥𝑥11 from Eq. (4). The 𝛽𝛽 expression incorporating this 
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switch function, denoted as Eq. (8), is termed the SA-SR model. It will be embedded within the CFD 
solver to adjust the calculations of the SA model. 
3.2     Validation and generalization of the SA-SR model. 

In this section, the accuracy of the SA-SR model in predicting stall flow will be tested in the actual 
CFD solving process. Initially, the SA-SR model is applied to the same conditions as the training data 
(𝑀𝑀𝑀𝑀 = 0.1,𝑅𝑅𝑅𝑅 = 2 × 106,𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼 = 14°), resulting in the 𝛽𝛽 distribution shown in Fig. 4. It can be 
observed that the SA-SR model produced a 𝛽𝛽 distribution essentially identical to the inversion result 
shown in Fig. 2(b).  

 
Fig. 4. 𝜷𝜷 distribution for the S809 airfoil predicted by the SA-SR model (𝑴𝑴𝑴𝑴 = 𝟎𝟎.𝟏𝟏,𝑹𝑹𝑹𝑹 =

𝟐𝟐 × 𝟏𝟏𝟏𝟏𝟔𝟔,𝒂𝒂𝒂𝒂𝒂𝒂 𝜶𝜶 = 𝟏𝟏𝟏𝟏°). 
Next, the SA-SR model is used to predict 𝐶𝐶𝐿𝐿 and the drag coefficient (𝐶𝐶𝐷𝐷) of the S809 airfoil at 

𝑀𝑀𝑀𝑀 = 0.1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅 = 2 × 106 across different AOAs. The results from Fig. 5(a) show that the current 
model accurately predicted the AOA at which the S809 airfoil begins to stall and the 𝐶𝐶𝐿𝐿 after stall, while 
maintaining the baseline SA model's accurate prediction for non-stall conditions. From Fig. 5(b), 
although 𝐶𝐶𝐷𝐷  information was not introduced during the inversion process, the SA-SR model still 
accurately correct the baseline SA model's prediction of the polar curve's turning point. Therefore, the 
current results demonstrate that the SA-SR model can maintain the accuracy of the baseline SA model 
in predicting attached flow while correcting its prediction of separated flow. This reflects the 
generalization ability of the current SA-SR model at different AOAs. 

 
      (a) 𝑪𝑪𝑳𝑳 curve.                                                              (b) 𝑪𝑪𝑫𝑫 curve. 

Fig. 5. 𝑪𝑪𝑳𝑳 and 𝑪𝑪𝑫𝑫 curves for the S809 airfoil predicted by the SA-SR model (𝑴𝑴𝑴𝑴 = 𝟎𝟎.𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑹𝑹𝑹𝑹 =
𝟐𝟐 × 𝟏𝟏𝟏𝟏𝟔𝟔). 

Further tests are conducted on the S805 and S825 airfoils, which have different geometric shapes 
from the S809 airfoil, with the inflow conditions remaining at 𝑀𝑀𝑀𝑀 = 0.1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅 = 2 × 106. Fig. 6 
shows the 𝐶𝐶𝐿𝐿 at different AOAs for these two airfoils, predicted by the SA-SR model, with experimental 
data sourced from reports by Somers et al. [22,23] It is evident that the SA-SR model, even when 
applied to airfoils different from those in the training data, still ensures accurate prediction of stall 
AOAs and 𝐶𝐶𝐿𝐿. 
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(a) S805 airfoil.                         (b) S825 airfoil. 

Fig. 6. 𝑪𝑪𝑳𝑳 curves for the S805 and S825 airfoils predicted by the SA-SR model (𝑴𝑴𝑴𝑴 = 𝟎𝟎.𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑹𝑹𝑹𝑹 =
𝟐𝟐 × 𝟏𝟏𝟏𝟏𝟔𝟔). 

Fig. 7 presents a comparison of the flow fields for the S805 and S825 airfoils at 𝛼𝛼 = 12°, as 
predicted by the SA-SR model, against the baseline SA model results. It is evident that the SA-SR 
model still corrects the 𝐶𝐶𝐿𝐿 by enlarging the separation bubble. Additionally, Fig. 7 clearly shows that 
although the S805 and S825 airfoils belong to the same series as the S809 airfoil, they have significant 
differences in their geometric shapes. Therefore, the accurate prediction of the 𝐶𝐶𝐿𝐿 for the S805 and S825 
airfoils by the SA-SR model demonstrates its generalization ability across different airfoil geometries. 

 
(a) S805, SA                                (b) S805, SA-SR 

 
(c) S825, SA                                (d) S825, SA-SR 

Fig. 7. Flow fields for the S805 and S825 airfoils predicted by the SA-SR model (𝑴𝑴𝑴𝑴 = 𝟎𝟎.𝟏𝟏, 𝑹𝑹𝑹𝑹 =
𝟐𝟐 × 𝟏𝟏𝟏𝟏𝟔𝟔,𝒂𝒂𝒂𝒂𝒂𝒂 𝜶𝜶 = 𝟏𝟏𝟏𝟏°). 

However, when we attempted to validate the SA-SR model under a more diverse set of conditions, 
the results are not entirely satisfactory. On the S809 airfoil case at 𝑀𝑀𝑀𝑀 = 0.1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅 = 1 × 106, the 
SA-SR model predicted the 𝐶𝐶𝐿𝐿 curve as shown in Fig. 8. The figure shows that at 𝑅𝑅𝑅𝑅 lower than those 
in the training data, the SA-SR model still predicts stall angles and 𝐶𝐶𝐿𝐿 that are too high. In other words, 
the SA-SR model does not sufficiently correct the baseline SA model. 
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Fig. 8. 𝑪𝑪𝑳𝑳 curve for the S809 airfoil predicted by the SA-SR model (𝑴𝑴𝑴𝑴 = 𝟎𝟎.𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝑹𝑹𝑹𝑹 = 𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟔𝟔) 

The results from Fig. 8 indicate that the current SA-SR model has limited generalization capability 
across different conditions. To address this issue, one strategy could be to expand the dataset to include 
flow fields at different 𝑅𝑅𝑅𝑅 . However, in practice, the 𝛽𝛽  distributions obtained from inversions at 
different 𝑅𝑅𝑅𝑅 vary, making it challenging for symbolic regression to effectively and uniformly fit them. 
Additionally, the efficiency of genetic algorithms tends to decrease as the number of samples increases, 
which further complicates the fitting process. Therefore, finding a method to effectively enhance the 
generalization ability of the current SA-SR model under various conditions will be a key issue that we 
need to address in the future. 
4     Conclusions and Future Work 

This paper utilizes the field inversion method with the discrete adjoint method and symbolic 
regression to develop a stall prediction model for airfoils based on the SA model, termed the SA-SR 
model. The model is integrated into the CFD solver ADflow and has been tested across different AOAs 
and airfoil geometries, demonstrating its good generalization capability and validating the feasibility of 
the current framework. However, the model performed poorly in test cases at different 𝑅𝑅𝑅𝑅, indicating 
its weak generalization capability across various conditions. Our next steps will involve efforts to 
enhance the generalization ability of the SA-SR model and to further validate it under a broader range 
of test cases. 
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