
[9-C-02]

Keywords:

©Retained by Authors 

 ICCFD12 

Oral presentation | Data science and AI

Data science and AI-I 
Wed. Jul 17, 2024 4:30 PM - 6:30 PM  Room C

 
Fast and Efficient hp-Variational PINNs framework for
solving the Incompressible Navier-Stokes equations 

*Thivin Anandh1, Divij Ghose1, Sashikumaar Ganesan1 （1. Indian Institute of Science, India）
hp-VPINNs, Incompressible Navier-Stokes, Scientific ML, VPINNs for flow problems 



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

ICCFD12-2024-0320

Fast and Efficient hp-Variational PINNs framework

for solving the Incompressible Navier-Stokes

equations

T. Anandh∗, D. Ghose∗ and S. Ganesan∗

Corresponding author: sashi@iisc.ac.in ∗ Department of Computational and Data
Sciences,

Indian Institute of Science, Bangalore, India.

1 Introduction

Physics-informed Neural Networks (PINNs) solve partial differential equations (PDE) by incorporating
the strong-form residual of the PDE into the neural network’s loss function [1]. Variational physics-
informed neural networks (VPINNs), which use the variational form of the PDE in the loss function,
have shown promise in being more accurate than PINNs [2]. Moreover, concepts like h-refinement
and p-refinement can be applied to VPINNs to further increase accuracy, resulting in the hp-VPINNs
framework[3]. However, despite their benefits, hp-VPINNs face two significant challenges. First, training
hp-VPINNs is computationally expensive, especially as the number of elements in the domain increases.
Second, current frameworks are limited to uniform meshes and cannot handle geometries with irregular
or skewed quadrilateral cells commonly found in CFD applications. In this work, we present a novel
hp-VPINN framework called FastVPINNs [4] for solving 2D incompressible Navier-Stokes equations.
Our framework efficiently computes the variational residual using tensor-based operations, resulting in
speedups of up to 100x over existing implementation of the hp-VPINNs and facilitates computation on
complex geometries using bilinear transformation. In this work, we propose to solve the 2D incompressible
Navier-Stokes equation using hp-VPINNs, which are absent in the literature. We demonstrate this by
solving the Kovasznay flow and lid-driven cavity flows at lower Reynolds numbers.

1.1 Incompressible Navier-Stokes Equation

Let Ω ⊂ R2, be a bounded domain with boundary ∂Ω. The simple version steady-state incompressible
Navier-Stokes equation in 2D can be written as

−ν∆u+ (u.∇)u+∇p = 0, in Ω,

∇.u = 0, in Ω,

u = g, in ∂Ω.

(1)

The unknowns, velocity and pressure within the domain Ω are represented by u and p, respectively. The
Dirichlet boundary value at ∂Ω is denoted by g.

2 Methodology

In our framework, we improve the existing implementation of hp-VPINNs [3] by assembling the test
function and its derivatives into a tensor, which enables us to compute the variational loss of all elements
within the domain in a single BLAS operation, thus significantly reducing the training time of the
network. Refer to [4] for additional details regarding the implementation. Figure 1 shows the speedup
of our framework compared to the existing implementation of hp-VPINNs for a Poisson-2D problem. In
this work, we have used a special form of Legendre Polynomial, where nth order polynomial is represented
as vn = Pn+1 − Pn−1 as mentioned in [2]
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Figure 1: Training time taken per epoch for various frameworks for a Poisson 2D problem

Figure 2: (a),(b),(c) - FEM Solution: velocity in x-direction, velocity in y-direction , pressure.
(d),(e),(f) - Predicted Solution: velocity in x-direction, velocity in y-direction , pressure

3 Numerical Results

3.1 Lid Driven Cavity

We have used FastVPINNs to solve the lid-driven cavity problem. The domain is a unit square, [0, 1]
in both directions. A lid velocity of u = 1 is applied, and a Reynolds number of 1 is used. The mesh
consists of 8 cells in each direction, with 64 test functions and 100 quadrature points per cell. A total
of 400 Dirichlet boundary points are used. The neural network architecture consists of 5 layers with
30 neurons per layer. We compared our solution with the solution obtained using the Finite Element
Method (FEM) [5] implemented in the FEM package ParMooN [6]. Our results show a good agreement
with the FEM solution.

3.1.1 Kovasznay Flow

Kovasznay flow [7] in two dimensions for the incompressible Navier-Stokes equation has an analytical
solution in the form:

u(x, y) = 1− eζx cos(2πy), v(x, y) =
ζ

2π
eζx sin(2πy), p(x, y) =

1

2

(
1− e2ζx

)
, (2)
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where

ζ =
1

2µ
−
√

1

4µ2
+ 4π2, µ =

1

Re
=

1

40
.

The calculation was performed in a domain with [−0.5, 1] in the x direction and [−0.5, 1.5] in the y
direction. We used 6 cells in the x-direction and 10 cells in the y-direction. we employed a neural network
architecture with 4 hidden layers and 50 neurons per layer, 36 quadrature points per cell, resulting in
2160 quadrature points and 400 boundary points used 16 test functions per cell. We have solved for
a Reynolds number of 40. For accuracy, we trained our model 10 times and reported the mean and
standard deviation of the relative L2 errors of u, v, and p.

Figure 3: (a),(b),(c): actual, predicted and pointwise error of u respectively. (d),(e),(f): actual, predicted
and pointwise error of v respectively. (g),(h),(i): actual, predicted and pointwise error of p respectively.

||upred − uexact||2 ||vpred − vexact||2 ||ppred − pexact||2
0.0049± 0.0036 0.0238± 0.0163 0.0063± 0.0017

Table 1: L2 norms between predicted and exact solutions.
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