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Abstract: Reynolds averaged Navier-Stokes (RANS) equations are essential for tackling 
engineering problems with high efficiency and reduced costs but exhibit accuracy limitations in 
separated flows due to inherent assumptions suitable mainly for attached flows. To address these 
issues, data-driven enhancements, particularly through field-inversion and machine learning 
(FIML), have been explored. While FIML has enhanced separated flow predictions, its 
machine-learning models lack robustness in simpler wall-attached flows like zero pressure-
gradient flat plates. This work introduces the Conditioned Field Inversion (FI-CND) method, 
which innovatively combines a correction factor � with a shielding function ��, inactive in the 
boundary layer and active elsewhere, to preserve the baseline Shear-stress-transport (SST) 
model's precision. The FI-CND method, compared to classic FI approaches (FI-CLS), maintains 
accuracy in wall-attached flows without compromising the performance improvements in 
separated flows provided by existing FIML methods.   
Keywords:    RANS, Turbulence Modeling, Data-driven method, Field inversion. 

 
1     Introduction 
 
Turbulence widely exists in engineering flows. Solving Navier-Stokes equations directly to resolve all 
eddies results in prohibitable computational costs. In practical engineering applications, people use 
turbulence modeling methods to lower the cost. Among the available turbulence modeling methods, the 
Reynolds Averaged Navier-Stokes (RANS) method has gained wide popularity due to its low 
computational cost and easy-to-use nature. Though the ever-growing computational capacity is making 
scale-resolved modeling methods (large eddy simulation, etc.) more and more realizable, experts still 
expect the RANS method will continue to be the workhorse of CFD in engineering applications for 
decades [1]. The industry is willing to have a turbulence model that can analyze more and more complex 
flows encountered in the full envelope of their product, especially the separated flows. However, after 
2000, the research in RANS turbulence modeling seems to be encountering stagnation: only a few 
models are proposed and the shortcomings in separated flows are not thoroughly solved [2].  
 
In recent years, the data-driven turbulence modeling method has shed new light on the development of 
novel and effective turbulence models that can resolve the separated flows more accurately [3]. The 
accumulation of high-fidelity data produced by direct numerical simulation (DNS) and experiments 
together with the giant leaps in machine learning has made this progress possible. Wang et al. applied 
evolution algorithms to recalibrate the turbulence models’ coefficients [4] using the experiment data of 
the separated flows. Duraisamy et al. [5] proposed a method called field inversion (FI) that can extract 
the model correction term distribution from sparse high-fidelity data. A machine learning model can 
then be constructed to map the local flow features to the correction term [6]. The whole framework is 
often referred to as field inversion and machine learning (FIML). Many papers suggest that the FIML 
method can be applied to complex flows or even 3-dimensional separated flows [7–9]. On the other 
hand, the field inversion step in FIML makes the method applicable to experiment data or DNS data 
that is sparse, which is often the case for data generated earlier. Consequently, the FIML framework is 
considered to have good engineering potential [1]. Another type of work tried to correct the prediction 
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error by introducing nonlinearity using neural networks trained on DNS data to the Reynolds 
stress [10,11]. Besides, Yan et al. tried to use generative artificial intelligence to generate the fluctuating 
information of turbulence [12]. The generated information is then fed into a neural network to predict 
the model correction. In summary, the data-driven turbulence models have now achieved great success 
in tackling complex separated flows that are hard to accurately compute using traditional turbulence 
models.  
 
However, there are still many problems with the current data-driven turbulence models that prevent 
them from being applied to real-world engineering problems. One of the fatal drawbacks is that the 
data-driven models struggle to resolve simple flows that are already nicely computed by the baseline 
model, showing very limited generalizability. Rumsey et al. [13] found that the FIML model trained on 
the adverse pressure-gradient flow degrades the baseline model’s performance in simple wall-attached 
flows such as zero-gradient flat plates. Yang et al. [14] found that if the activation function in the neural 
network is not bounded, the data-driven model cannot produce correct asymptotic behavior near the 
wall as the Reynolds number approaches infinity. On the other hand, Spalart [15,16] argued that the 
law-of-wall must be computed with enough accuracy for all newly proposed turbulence models since 
the wall-attached flows still dominate in most engineering applications. To address this problem, Jackel 
et al. [17] used a closed-form correction term constructed by FIML, but with limited success. Joel Ho 
et al. [18] applied the probabilistic machine learning method in the ML step of FIML and successfully 
preserved the baseline model’s performance in the wall-attached flows. However, the model’s ability 
to correct separated flows is substantially compromised. Bin et al. [19,20] constructed the constrained-
recalibration model that can fulfill the constraint related to the law-of-wall when the model paramters 
are freely adjusted. The constrained-recalibrated models show good performance in preserving the 
accuracy in wall-attached flows, but the parameters can only be constant throughout the field.  
 
In this paper, we propose a modified field inversion approach called conditioned field inversion (FI-
CND). Different from the classical field inversion (FI-CLS) method described in  [5], the corrective 
term � is multiplied with a shielding function �� in FI-CND. �� is zero inside the boundary layer and 1 
elsewhere, ensuring that any change in � won’t affect the basic calibration in the boundary layer. We 
apply the FI-CND and FI-CLS methods in the same cases to construct corrective models for separated 
flows. The model with closed-form is pursued using symbolic regression (SR). The result shows that 
the model constructed by FI-CND (the SR-CND model) and the one constructed by FI-CLS (the SR-
CLS model) have similar accuracy in separated flows tested, but only the SR-CND model can preserve 
the accuracy in the boundary layers. Consequently, the FI-CND method proposed by us can construct 
data-driven turbulence models that preserve the accuracy of simple wall-attached flows without 
compromising the original FIML’s ability to correct separated flows.  
 
2     The Classic Field Inversion and the Conditioned Field Inversion 
 
We focus on the SST 2003 model described in [21]. The SST 2003 model has two transport 
equations for turbulent kinetic energy � and the specific dissipation frequency �: 

 

��
��

= �� − �∗�� + ∇ ⋅ [(� + ����)∇�] 
��
��

=
�

��
�� − ��� + ∇ ⋅ [(� + ����)∇�] + 2(1 − ��)

σ��

ω
∇� ⋅ ∇� 

(1) 

More details for the terms in the SST 2003 model can be found in [21]. In the classic field 
inversion, the corrective term �(�) is directly multiplied to the destruction term of the �’s 
equation: 
 ��

��
= −�(�)��� + ⋯ (2) 
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Consider the algebraic constraint required to satisfy the log law in the turbulent channel flow 
in the SST model [22]: 
 
 � − �∗� = ����∗��, � = 0.41 (3) 

For the � equation used in the field inversion, the constraint will be: 
 �(�)� − �∗� = ����∗��, � = 0.41 (4) 

Combining Eq. (3) and Eq. (4), we find �(�) must equals to 1 in the boundary layer for the log 
law to be held. If the classic field inversion process makes any correction of �(�) in the 
boundary layer, the accuracy of the log law will be compromised. To safeguard the boundary 
layer, the following conditioned field inversion (FI-CND) approach is developed. For the FI-
CND, the �’ equation is written as: 
 ��

��
= −[(�(�) − 1)�� + 1]��� + ⋯ (5) 

 

 �� = 1 − tanh[(8��)�] , �� =
� + ��

�������,���,�
 (6) 

A typical distribution of �� is shown in Figure 1. It equals 0 in the boundary layer and remains 
1 elsewhere. Consequently, �(�)  in the boundary layer would never affect the basic 
calibrations because it is filtered out by the ��. On the other hand, �(�) outside the boundary 
layer can influence the flow just as it is in the FI-CLS. The intrinsic assumption behind the FI-
CND is consistent with the hypotheses made by previous works [23,24] that the error of the 
RANS turbulence model mainly exists outside the boundary layer. 
 

 
Figure 1. �� distribution 

We adjust the �(�)  field to minimize the discrepancy between the RANS prediction (using the 
corresponding �(�)  field) and the high-fidelity data. This task can be described as solving an 
optimization problem: 
 

 min
�

 � = ���� �[�� − ℎ�(�)]�
�

���

+ ��� ���� − 1��
�

���

 (7) 

�� is the value of �(�) in the ��� cell in the CFD simulation. � is a vector whose ��� element 
is ��. �� is the ��� high-fidelity data and ℎ�(�) is the predicted value of the high-fidelity data 
given by RANS. ���� and �� are constants. The first term in Eq. (7) means that we adjust � to 
minimize the error between the RANS prediction and the high-fidelity data, and the second 
term means that we don’t want the �(�) field to be too bumpy. ���� is chosen so that the first 
term ∼ �(1) when �� = 1, ∀� and ��� is set to 1 × 10��. We use a gradient-based method [25] 
to solve Eq. (7) and the gradient is computed by the discrete adjoint method [26–28].  
 
3     Data Assimilation and Model Training 
 
In this section, we describe the data assimilation performed by the FI-CLS and the FI-CND. Machine 
learning models with closed-form are then constructed based on the FI data using symbolic regression.  
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2.1     Data Assimilation 
The sparse LES data of the curved-backward facing step (CBFS) [29] and the NASA 
hump [30] are used for field inversion. Both flows have massive separation. The CBFS case 
features a low Reynolds number (�� = 13700) and the hump case has a high Reynolds 
number (�� = 9.4 × 10�). The velocity in the separated flow is used as the high-fidelity data 
and 30 data points are extracted and gathered for the first term in Eq. (7). The result of the 
field inversion is shown in Figure 2. Both the FI-CLS and the FI-CND get an optimized �(�) 
field that can sufficiently decrease the error between the RANS prediction and the LES data. 
However, the �(�) field given by the FI-CLS does not equal 1 in the boundary layer upstream 
of the step while the FI-CND gives a �(�) that is uniformly 1 in the boundary layer. The �(�) 
field obtained here is used as the label for the subsequent symbolic regression.  

 
Figure 2. The field inversion result 

 
2.2     Model Training 
PySR [31] is used to distill a closed-form model from the data provided by FI-CLS and the FI-
CND. The data of the CBFS case and the hump case are mixed to form the training set to 
capture the characteristics of both the low Reynolds number flow and the high Reynolds 
number flow. The input features of the model are shown in Table 1. �� and  ��  are the non-
dimensional strain tensor and rotation tensor defined as: 
 �� =

�
�∗�

, �� =
�

�∗�
, �∗ = 0.09 (8) 

Table 1. The input features of the model 
Name �� �� �� Re� ��/� � 

Definition tr(���) tr(���) tr(��� ⋅ ���) |�|��/� ���
� ��,�/(�∗��) ����/Re� 

 
About 10000 sample points are used for training. The trained expressions for the correction 
term � based on the FI-CLS dataset and the FI-CND dataset are shown in Eq. (9) and Eq. (10). 
 FI-CLS: � − 1 = − �

���
�� tanh(−0.092��) (9) 

 FI-CND: � − 1 = min(0.00435��
�,  3.806) (10) 

The two models above are referred to as the SR-CLS and the SR-CND model in the rest of the 
paper. Both expressions adjust the � value based on the local strain rate or rotation rate.  
 
4     Results 
4.1     Training Set Performance 
The � contour and the velocity profiles predicted by the SR-CLS and the SR-CND model are 
shown in Figure 3. Both the models activate the correction term � (� − 1 > 0) in the separated 
shear layer. The velocity profiles obtained by the SR-CLS and the SR-CND model match the 
high-fidelity data better than the SST model. The result indicates that the trained models are 
effective in the training set. On the other hand, it suggests that the SR-CND model and the SR-
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CLS model have similar ability to correct the separated flow in the training set, though they 
are obtained by FI-CND and the FI-CLS respectively.  

 
Figure 3. The performance of the SR-CND model and the SR-CLS model on the training set 

Comparing the �� predictions of the NASA hump with the experiment data [32], we find that 
though both the SR-CND model and the SR-CLS model give accurate results in the separated 
flow, the SR-CLS model generates a large error in the attached boundary layer. Therefore, 
only the SR-CND model, constructed by the FI-CND method proposed, can maintain the 
accuracy in the wall-attached flows. 

 
Figure 4. The MSE of �� in different regions of the NASA hump. 

 
4.2     Iced Airfoil (Test Set) 
The GLC305 iced airfoil at ��� = 6∘ is computed using the SR-CND, SR-CLS, and the SST 
model. The � distribution and the pressure coefficient distribution are shown in Figure 5. Both 
the SR-CND and the SR-CLS models activate the correction term in the separated shear layer 
starting from the ice accreted at the leading edge. The �� distribution shows that the results of 
the SR-CLS model and the SR-CND model are significantly closer to the experiment 
compared with the SST model. The SST model predicts a complete stall with a large separation 
bubble covering the whole upper surface of the airfoil, which is different from the experiment. 
The results indicate that the SR-CLS and the SR-CND models have similar abilities to correct 
the separated flow in the iced airfoil case. 
 

 
Figure 5. The result of the GLC305 iced airfoil 

 
4.3     3D SAE body (Test Set) 
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The SAE body [33] is studied using the models constructed. The geometry resembles a sedan 
car. This case features a complex 3-D separated flow. The result shows that the separations 
predicted by the SR-CLS and the SR-CND model match the PIV data while the SST model 
overpredicts the separation size. Consequently, the model constructed by the FI-CND method 
proposed in this paper can achieve similar generalizability compared with the model 
constructed by the FI-CLS model in complex 3-D separated flows. 
 

 
Figure 6. The result of the SAE body 

 
4.4     Zero Pressure-Gradient Flow (Test Set) 
The zero pressure-gradient (ZPG) flat plate is calculated using the models constructed in this 
paper. Figure 7 shows that the SR-CLS model overpredicts the �� along the flat plate while 
the SR-CND model gives ��  that agrees well with the baseline SST model and the 
experiment [34]. The result indicates that only the model constructed by the proposed FI-CND 
method can preserve the accuracy of the baseline model in simple wall-attached flows.  
 

 
Figure 7. The �� distribution and the velocity profile 

 
5     Conclusion 
In this research, we introduced the conditioned field inversion (FI-CND) method, which 
enhances the conventional field inversion approach by integrating a shielding function, ��, with 
the correction factor β in the ω equation to preserve the baseline model’s calibration in 
boundary layers. Applied to the NASA hump and the CBFS case, this method led to the 
development of two models: the classic SR-CLS and the novel SR-CND. Evaluations across 
various flow scenarios, including separated and wall-attached flows, yielded significant 
findings: 
 
1. Both models performed robustly in separated flows, affirming the FI-CND method’s 

effectiveness without compromising model generalizability across similar flow dynamics. 
2. Unlike the SR-CLS, the SR-CND model maintained high accuracy in scenarios well-

handled by the baseline SST model, such as the ZPG flat plate and the NACA0012 airfoil, 
demonstrating superior L2 generalizability. 
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Our results underscore that the FI-CND method not only achieves consistent performance in 
complex separated flows but also preserves baseline accuracy in simpler attached flows, 
distinguishing it from traditional field inversion approaches and advancing data-driven 
turbulence modeling. 
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