[9-B-01] Wall-Modelled Large-Eddy Simulation of the Aerospatiale Aairfoil at Near Stall Conditions

*Timofey Mukha¹, Matteo Parsani¹ (1. King Abdullah University of Science and Technology) Keywords: Wall-modelled large-eddy simulation, Airfoil, Nek5000, OpenFOAM, Boundary layers

Wall-Modelled Large-Eddy Simulation of the Aerospatiale A-airfoil at Near Stall Conditions

Timofey Mukha and Matteo Parsani King Abdullah University of Science and Technology ICCFD 12, July 2024, Kobe, Japan

Background

- We are interested in advancing WMLES capabilities and understanding current limitations.
 - > Wide-spread finite volume solvers (https://www.openfoam.com).
 - > High-order GPU-enabled solvers (https://neko.cfd).
- Goal: application to aerospace, marine technology, and meteorology.
- Currently well-validated for zero-pressure gradient boundary layers.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

|1

Timofey Mukha and Matteo Parsani

The Aerospatiale A-airfoil at $Re_c = 10^7$ and $13.3^{\circ}AoA$

- Wall-resolved LES data from (Tamaki and Kawai, 2023).
- No separation in the mean, but clear APG effects.
- Highest Re-number to date.
- A good WMLES test case?
- Selected as a common test case for the WMLES workshop at SciTech.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

|2

Timofey Mukha and Matteo Parsani

Setup for spectral element simulations

- Nek5000 with KTH_Framework tooling.
- CG SEM solver with user-selectable basis order.
- Structured hexahedral meshes.
- Wall-stress model using Spalding's law of the wall.
- Neumann boundary condition on wall-parallel components.
- Vreman SGS model (also tested Sigma).
- h can be set to arbitrary value: spectral interpolation.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

3

Timofey Mukha and Matteo Parsani

Setup for spectral element simulations

- > Variable timestep targeting CFL = 2.
- BDF2 + OIFS time integration.
- We use $h = 0.1\delta_{99}$ in the turbulent region and \approx distance to first node in the laminar.
- So, relying here on δ_{99} data from WRLES.
- We start with polynomial order 3 (so linear for pressure) to get rid of the TE vortex.
- Then switch to order 5, run a few c/U_{∞} to get rid of the transient.
- Finally average across about $4c/U_{\infty}$.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

|4

Timofey Mukha and Matteo Parsani

SEMS Results, boundary layer thickness

- BL grows too fast right from the start. So, in reality $h < 0.1\delta_{99}!$
- Remarkably good shape factor in the turbulent region.
- I use the method by Griffin, Fu and Moin. We must report this!

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Timofey Mukha and Matteo Parsani

SEM Results, mean velocity in outer scaling

- Excellent results in the turbulent region.
- Interestingly, the results are actually best in the APG region.
- Aligns with the idea that \(\tau_w\) has a smaller effect on outer layer dynamics?

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

6

Timofey Mukha and Matteo Parsani

SEM Results, mean velocity in inner scaling

- Quite accurate results, hinting good c_f .
- "LES buffer layer" eats almost the whole log law.
- SGS model too diffusive near the wall?

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Timofey Mukha and Matteo Parsani

Wall-Modelled Large-Eddy Simulation of the Aerospatiale A-airfoil at Near Stall Conditions KAUST

|7

SEM Results, RMS values of velocity

- Excellent agreement for a WMLES.
- It seems capturing the APG-affected TBL is not a big issue for WMLES.
- Closer to the leading edge, the results are poorer.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Timofey Mukha and Matteo Parsani

SEM Results, skin friction coefficient

- Transition at the right place. Seems to be easy for this case. (No tripping!)
- Good agreement in the turbulent region. But must be due to error cancellation!

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Timofey Mukha and Matteo Parsani

Setup for finite volume simulations

- OpenFOAM v2306, pimpleFoam with 3 outer iterations.
- Approx. 150 million hex cells.
- Variable timestep targeting CFL = 1.
- BDF2 time integration.
- h set to off-wall cell.
- Cai-Sagaut explicit algebraic wall model.
- Wall stress enforced via change in wall ν_t .
- Sigma SGS model.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Timofey Mukha and Matteo Parsani

Simple transition indicator

- Use the v_t from the Sigma SGS model designed to be 0 in laminar regions.
- Use the ansatz $\tanh(C_1\nu_t/\nu)^{C_2}$. Provisionally, $C_1 = 75$, $C_2 = 6$.
- The ν_t is quite noisy: spatial averaging across neighbors.
- A lot of false positives outside the TBL. But transition place

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Timofey Mukha and Matteo Parsani

Simple transition indicator

- Use the ν_t from the Sigma SGS model designed to be 0 in laminar regions.
- Use the ansatz $\tanh(C_1\nu_t/\nu)^{C_2}$. Provisionally, $C_1 = 75$, $C_2 = 6$.
- The ν_t is quite noisy: spatial averaging across neighbors.
- A lot of false positives outside the TBL. But transition place

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

| 12

Timofey Mukha and Matteo Parsani

Simple transition indicator

- Use the ν_t from the Sigma SGS model designed to be 0 in laminar regions.
- Use the ansatz $\tanh(C_1\nu_t/\nu)^{C_2}$. Provisionally, $C_1 = 75$, $C_2 = 6$.
- The ν_t is quite noisy: spatial averaging across neighbors.
- A lot of false positives outside the TBL. But transition place

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

|13

Timofey Mukha and Matteo Parsani

Wall-Modelled Large-Eddy Simulation of the Aerospatiale A-airfoil at Near Stall Conditions KAUST

ICCFD12

FVM Results, boundary layer thickness

Correct growth before the pressure gradient effects kick in!

Pressure gradient effect is too weak.

|14

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

FVM Results, mean velocity

- Note quite as accurate as the SEM overall.
- But better prior to transition.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Timofey Mukha and Matteo Parsani

Wall-Modelled Large-Eddy Simulation of the Aerospatiale A-airfoil at Near Stall Conditions KAUST

|15

Conclusions

- Soft indication that SEM is doing a better job than FVM in the outer layer.
 - > At similar DoF numbers.
 - > Great accuracy in the APG region.
- The main issue remaining for SEM is to treat the laminar / transition region.
 - > Leads to erroneous growth rate, among other issues.
- A simple transition indicator based on the Sigma model tested in FVM.
 - Seems to do a pretty good job, but parameter values may be case dependent.
- Future:
 - Scheme / resolution adjustments for better FVM results?
 - > Implement indicator in SEM.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Timofey Mukha and Matteo Parsani