Oral presentation | Numerical methods Numerical methods-V Wed. Jul 17, 2024 4:30 PM - 6:30 PM Room A

[9-A-04] A novel pressure-based solver for subsonic compressible flows

*Jerome Jansen¹, Stephane Glockner¹, Arnaud Erriguible¹ (1. Institut de mécanique et d'ingénierie de Bordeaux)

Keywords: Compressible, Pressure correction method, Low Mach, Manufactured solution

A novel pressure-based solver for subsonic compressible flows

J. Jansen^{1,2}, S. Glockner^{1,2}, D. Sharma^{1,2}, A. Erriguible^{1,2}

Wednesday July 17, 2024

ICCFD12 Kobe, Session Numerical methods

 ¹ Univ. Bordeaux, CNRS, Bordeaux INP, I2M, UMR 5295, F-33400, Talence, France
 ² Arts et Metiers Institute of Technology, CNRS, Bordeaux INP, Hesam Universite, I2M, UMR 5295, F-33400 Talence, France

Introduction	Governing equations	Algorithm IPCMSF	Numerical Methods	V&V	Application	Conclusions
O	OO	00	O	00000000	00	00
Table of	contents					

- 1. Introduction
- 2. Governing equations
- 3. Incremental pressure correction method (IPCMSF)
- 4. Numerical Methods applied with IPCMSF implementation
- 5. Verifications et Validations
- 6. Application
- 7. Conclusions and futurs works

Introduction	Governing equations	Algorithm IPCMSF	Numerical Methods	V&V	Application	Conclusions
	OO	00	O	00000000	00	00
Introduct	tion					

Two main approaches for solving subsonic compressible flows

Pressure-based methods:

- Come from incompressible community (Chorin, Patankar,)
- Solving *p* from Momentum Cons. + Mass Cons. and then compute *ρ* with EoS
- Extended to all "speed flows" with low and high Mach approches

Pressure-based methods can be:

Density-based methods:

- Come from compressible (supersonic) community (Lax, Godunov, ...)
- Solving ρ from Mass Cons. and then compute p with EoS
- Extended to low Mach with approches to overcome the singular limit of $c \to \infty$
- coupled with an iterative process (SIMPLE/PISO, Wall *et al.*¹, Cang and Wang²)
- time-splitted or prediction/correction approach (Chorin, Goda methods)

Motivation of the work: Starting from Goda incompressible **incremental pressure correction method**³, propose an extended algorithm for compressible subsonic flows with full 2nd order time accuracy

Warning: Conservation equations are written in primitive form \rightarrow we only consider smooth field variations (no shocks)

¹C. Walls, C.D. Pierce, P. Moin, JCP, 2002

²C. Cang, P.Y. Wang, CF, 2023

³K. Goda, JCP, 30(1):76-95, 1979

Modelling over time t and along space x a **monophasic** fluid of density ρ , pressure p, temperature T and velocity v flowing with respect of the conservations of :

• Mass

$$\frac{\partial \rho}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \rho + \rho \boldsymbol{\nabla} \cdot \boldsymbol{v} = \boldsymbol{0}$$

• Momentum

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v}\right) = -\nabla \rho + \nabla \cdot (\mu \dot{\gamma}) - \frac{2}{3} \nabla (\mu \nabla \cdot \mathbf{v}) + \rho \mathbf{g}$$

• Energy, expressed in variable (c_p, T) or (c_v, T)

$$\rho c_{p} \left(\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T \right) = T \beta_{p} \left(\frac{\partial p}{\partial t} + \mathbf{v} \cdot \nabla p \right) + \nabla \cdot (\lambda \nabla T) + \Phi_{d}(\mathbf{v})$$

Closure of the model with an Equation of State (EoS) for all thermophysical properties :

$$p = EoS(\rho, T), \chi_T = EoS(p, T), c_p = EoS(p, T), \dots$$

Notations are as follows :

$$\beta_{\rho} = -\frac{1}{\rho} \left. \frac{\partial \rho}{\partial T} \right|_{\rho}, \ \chi_{\tau} = \frac{1}{\rho} \left. \frac{\partial \rho}{\partial \rho} \right|_{\tau}, \ \dot{\gamma} = \nabla \mathbf{v} + \nabla \mathbf{v}^{T}, \ \Phi_{d} = -\frac{2\mu}{3} \left(\nabla \cdot \mathbf{v} \right)^{2} + \frac{\mu}{2} \dot{\gamma} : \dot{\gamma}$$

Introduction	Governing equations	Algorithm IPCMSF	Numerical Methods	V&V	Application	Conclusions
O	O●	00	O	00000000	00	00
Derivatio	on of an equat	ion for pressu	re in primitivo	e variable		

By applying the material derivative on $p = f(T, \rho)$:

$$\frac{\mathrm{D}\rho}{\mathrm{D}t} = \left. \frac{\partial\rho}{\partial\rho} \right|_{T} \frac{\mathrm{D}\rho}{\mathrm{D}t} + \left. \frac{\partial\rho}{\partial T} \right|_{\rho} \frac{\mathrm{D}T}{\mathrm{D}t} = \frac{1}{\rho\chi_{T}} \frac{\mathrm{D}\rho}{\mathrm{D}t} + \frac{\beta_{\rho}}{\chi_{T}} \frac{\mathrm{D}T}{\mathrm{D}t}$$

Using mass and energy conservation, we get a pressure equation as

$$\frac{\mathrm{D}\boldsymbol{p}}{\mathrm{D}\boldsymbol{t}} = -\rho \boldsymbol{c}^2 \boldsymbol{\nabla} \cdot \boldsymbol{v} + \frac{\beta_{\boldsymbol{p}} \boldsymbol{c}^2}{\boldsymbol{c}_{\boldsymbol{p}}} \left(\boldsymbol{\nabla} \cdot (\lambda \boldsymbol{\nabla} T) + \boldsymbol{\Phi}_d \right)$$

This equation describing the evolution of pressure will be used to derived an **implicit pressure equation** within our method.

Remarks

- Pressure evolution equation can be see as another formulation of the energy conservation principle
- No restriction on Mach number, temperature gradient or fluid type are made
- In incompressible flow limit ($c \to \infty$ and $\beta_p = 0$), derived pressure equation reduced to $\nabla \cdot \mathbf{v} = 0$
- Several authors have already developed and used this equation in **very similiar forms**:

Kwatra *et al.*, JCP, 228(11), 2009 / Urbano *et al.*, JCP, 456:111034, 2022 Toutant *et al.*, Physics Letters A, 381(44), 2017)

Introduction	Governing equations	Algorithm IPCMSF	Numerical Methods	V&V	Application	Conclusions
O	OO	●0	O	00000000	00	00
Derivatio	n of the discr	etized pressur	re increment e	equation		

After a prediction of the velocity field \mathbf{v}^* computed using ∇p^n , the classical Goda pressure increment $\varphi = p^{n+1} - p^n$ equation reads

$$\mathbf{v}^{n+1} - \mathbf{v}^* = -\frac{\Delta t}{a\rho^\dagger} \nabla \varphi,$$

with a time coefficient and ρ^{\dagger} a time extrapolation.

We approximate $\nabla \cdot \mathbf{v}^{n+1}$ ($\neq 0$ for compressible flows) using the following discretized pressure equation:

$$\frac{a\rho^{n+1}+b\rho^n+c\rho^{n-1}}{\Delta t}+\boldsymbol{v}^{\dagger}\cdot\boldsymbol{\nabla}\rho^{\dagger}=-(\rho c^2)^{\dagger}\boldsymbol{\nabla}\cdot\boldsymbol{v}^{n+1}\left(\frac{\beta_{\rho}c^2}{c_{\rho}}\right)^{\dagger}(\boldsymbol{\nabla}\cdot(\lambda\boldsymbol{\nabla}T)+\Phi_d)^{\dagger}$$

By rearranging the terms and by expressing φ , the divergence of the pressure increment equation for compressible flows reads

$$\frac{a}{(\rho c^2)^{\dagger} \Delta t} \varphi - \boldsymbol{\nabla} \cdot \left(\frac{\Delta t}{a \rho^{\dagger}} \boldsymbol{\nabla} \varphi \right) = - \boldsymbol{\nabla} \cdot \boldsymbol{v}^* + \left(\frac{\dot{S}_{\varphi}}{\rho c^2} \right)^{\dagger}$$

Remarks

- Discretized pressure increment equation is of elliptic nature (Helmholtz equation) with variable coefficients
- In incompressible flow limit ($c \to \infty$ and $\beta_p = 0$), it reduce to $\frac{\Delta t}{a \rho^{\dagger}} \Delta \varphi = \nabla \cdot \mathbf{v}^*$
- Using the Chorin projection method, the same equation arise for the pressure variable (Kwatra *et al.*, JCP, 228(11), 2009 / Urbano *et al.*, JCP, 456:111034, 2022)

1. Estimated density ρ^{\dagger} computation:

$$\rho^{\dagger} = 2\rho^{n} - \rho^{n-1} \quad \text{or} \quad \frac{\partial \rho^{\dagger}}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{\nu}) = 0$$

2. Predicted velocity \mathbf{v}^* resolution⁴ using ∇p^n + BCs:

$$\rho^{\dagger}\left(\frac{a\boldsymbol{v}^{*}+b\boldsymbol{v}^{n}+c\boldsymbol{v}^{n-1}}{\Delta t}+\boldsymbol{\nabla}\cdot(\boldsymbol{v}^{\dagger}\otimes\boldsymbol{v}^{*})-\boldsymbol{v}^{*}\boldsymbol{\nabla}\cdot\boldsymbol{v}^{\dagger}\right)=\boxed{-\boldsymbol{\nabla}\rho^{n}}+\boldsymbol{\nabla}\cdot(\mu^{\dagger}\dot{\boldsymbol{\gamma}}^{*})-\boldsymbol{\nabla}\left(\frac{2\mu^{\dagger}}{3}\boldsymbol{\nabla}\cdot\boldsymbol{v}^{*}\right)+\rho^{\dagger}\boldsymbol{g}$$

3. Pressure increment φ implicit resolution + BCs:

$$\frac{a}{(\rho c^2)^{\dagger} \Delta t} \varphi - \boldsymbol{\nabla} \cdot \left(\frac{\rho^{\dagger}}{a \Delta t} \boldsymbol{\nabla} \varphi\right) = -\boldsymbol{\nabla} \cdot \boldsymbol{v}^* + \left(\frac{\dot{S}_{\varphi}}{\rho c^2}\right)^{\dagger}$$

4. Pressure update and velocity correction:

$$p^{n+1} = p^n + \varphi$$
, and $\mathbf{v}^{n+1} = \mathbf{v}^* - rac{
ho^\dagger}{\Delta t} \nabla \varphi$

5. Temperature T^{n+1} resolution² + BCs:

$$\rho^{\dagger} c_{\rho}^{\dagger} \left(\frac{a T^{n+1} + b T^{n} + c T^{n-1}}{\Delta t} + (\nabla \cdot (\mathbf{v} T) - T \nabla \cdot \mathbf{v})^{n+1} \right) - \nabla \cdot (\lambda^{\dagger} \nabla T^{n+1})$$
$$- T^{n+1} \beta_{\rho}^{\dagger} \left(\frac{a p^{n+1} + b p^{n} + c p^{n-1}}{\Delta t} + \mathbf{v}^{n+1} \cdot \nabla p^{n+1} \right) = \Phi_{d}^{n+1}$$

6/19

6. Thermophysical properties updates with EoS: $\rho^{n+1} = EoS(T^{n+1}, p^{n+1}), \beta_p^{n+1} = ...$

⁴Could be explicit or implicit

Introduction	Governing equations	Algorithm IPCMSF	Numerical Methods	V&V	Application	Conclusions
O	OO	○●	O	00000000	00	00
The algo	rithm of IPCN	1SF with 2nd	order time di	scretizatio	n	

Steps enumeration:

- 1. Estimated density ρ^{\dagger} computation
- 2. Predicted velocity \mathbf{v}^* resolution using p^n
- 3. Pressure increment φ implicit resolution
- 4. Pressure update and velocity correction
- 5. Temperature T^{n+1} resolution
- 6. Thermophysical properties updates with EoS

Boundary conditions:

Step 1. If mass conservation solved, Dirichlet or Neumann:

$$\rho_{\Gamma} = f(\mathbf{x}) \text{ or } \partial \rho / \partial n_{\Gamma} = g(\mathbf{x})$$

- Step 2. Dirichlet or Neumann:
- $u_{\Gamma} = f_u(x)$ or $\partial u / \partial n_{\Gamma} = g_u(x)$ Step 3. Homogeneous neumann:
 - $\partial \varphi / \partial n_{\Gamma} = 0$
- Step 5. Dirichlet or Neumann: $T_{\Gamma} = f_{T}(\mathbf{x}) \text{ or } \partial T / \partial n_{\Gamma} = g_{T}(\mathbf{x})$

Remarks

- Implicit or explicit resolution of steps (2.) and (5.) are possible and case-dependent
- Large Δt availables thanks to step (3.)
- The computational cost is mainly at step (3.)
- The Mass conservation equation can never be explicitly solved

Numoria	al Mathada a	voilable in Ne	tue for IDCM	CE	00	00
Introduction	Governing equations	Algorithm IPCMSF	Numerical Methods	V&V	Application	Conclusions

CFD code notus

- Open Source project started in 2015
- Based of Finite Volume Method on staggered grid with immersed boundary method
- Massively parallel written in modern Fortran (MPI/OpenMP)
- Numerical experimentations
- Multiphysics

- Time discretization: 2nd order Backward Differentiation Formula (BDF2)
- Diffusion and advection terms discretizations: implicit o2_centered
- Treatment of pressure advection term $v \cdot \nabla p$: explicit upwind_o2
- **Space- and time-dependent** thermophysical properties:
 - \rightarrow 2nd order space extrapolation of face fields $\rho(\mathbf{x})$, $\mu(\mathbf{x})$ and $\lambda(\mathbf{x})$ at boundaries
 - \rightarrow 2nd order time extrapolation of cell centered fields ρ^{\dagger} , χ_{T}^{\dagger} , β_{p}^{\dagger} , ...
- Solver momentum, pressure and temperature HYPRE_GMRES with left_jacobi and PFMG preconditioner (tol 10^{-12})
- If mass conservation solved: explicit RK-nssp3_o2 + WENO5

Introduction	Governing equations	Algorithm IPCMSF	Numerical Methods	V&V	Application	Conclusions			
O	OO	00	O	●0000000	00	00			
Verificatio	Verifications againt analytical solutions								

Test-case	Geometry	Fluid	EoS	Physic
Isentropic injection	"0D"	Air	Perfect Gas	Fluid compression
Linear acoustic pulse	1D	Air	Perfect Gas	Acoustic propagation
Manufactured solution isotherm	2D	Air	Perfect Gas	None
Manufactured solution anisotherm $Ma = 0.6$	2D	Air	Perfect Gas	None
Manufactured solution anisotherm $\mathrm{Ma}=0.002$	2D	Air	Perfect Gas	None

Objectives:

- $\bullet\,$ Explore consistency of the proposed IPCMSF algorithm
- Explore time order accuracy of IPCMSF algorithm for (u, T, p)
- Check bug-free implementation within Notus with increasing complexity of cases

Introduction	Governing equations	Algorithm IPCMSF	Numerical Methods	V&V	Application	Conclusions
O	OO	00	O	0●000000	OO	00
Linear ad	coustic pulse p	propagation				

From the resolution of the d'Alembert equation, analytical solutions are available:

$$p(x,t) = p_0 + \Delta p_0 \exp\left(-rac{(x-c_0t)^2}{2\Sigma^2}
ight)$$

Δt in s	$ \varepsilon_v _{L_2}$	order	$ \varepsilon_v _{L_{\infty}}$	order	$ \varepsilon_p _{L_2}$	order	$ \varepsilon_p _{L_{\infty}}$	order	$ \varepsilon_{\rho} _{L_2}$	order	$ \varepsilon_{\rho} _{L_{\infty}}$	order
1.60×10^{-4}	$4.568 imes 10^{-2}$	n/a	9.698×10^{-2}	n/a	1.842×10^{1}	n/a	$3.911 imes10^1$	n/a	$1.528 imes10^{-4}$	n/a	$3.245 imes 10^{-4}$	n/a
8.00×10^{-5}	$2.304 imes 10^{-2}$	0.987	5.057×10^{-2}	0.939	9.293	0.987	$2.039 imes10^1$	0.940	$7.710 imes10^{-5}$	0.987	$1.692 imes 10^{-4}$	0.940
4.00×10^{-5}	$7.871 imes 10^{-3}$	1.550	1.846×10^{-2}	1.454	3.176	1.549	7.451	1.452	$2.635 imes10^{-5}$	1.549	$6.182 imes 10^{-5}$	1.452
2.00×10^{-5}	$1.986 imes10^{-3}$	1.987	4.873×10^{-3}	1.922	$8.017 imes10^{-1}$	1.986	1.968	1.920	$6.651 imes10^{-6}$	1.986	$1.633 imes 10^{-5}$	1.920
1.00×10^{-5}	$3.272 imes 10^{-4}$	2.601	$7.510 imes 10^{-4}$	2.698	$1.321 imes 10^{-1}$	2.601	$3.036 imes 10^{-1}$	2.697	$1.096 imes10^{-6}$	2.601	2.519×10^{-6}	2.697

Temporal order of accuracy (BDF2, o2_centered), First time step $\Delta t = 1.6 \times 10^{-4}$ s $\sim CFL_{ac} = 2.84 \times 10^{1}$. Mesh size 512×8, $t_f = 2.88 \times 10^{-3}$ s.

Introduction	Governing equations	Algorithm IPCMSF	Numerical Methods	V&V	Application	Conclusions
O	OO	00	O	00●00000	00	00
Manufac	tured solution	s for subsoni	c compressible	e flow		

Proposed compressible MS^4 on square domain $\Omega = [0,1] \times [0,1]$ with:

- Dirichlet BCs for velocity, temperature (and density) fields
- Homogeneous neumann BC for pressure increment
- Perfect gas EoS of the fluid $\rho = \rho / RT$:
- Unpleasant properties solution, e.g. $\partial p / \partial n_{\Gamma} \neq 0$ and $\nabla \cdot u \neq 0$

 $p = p_0 + p_1 \sin^2(\pi y) \cos^2(\pi x) \cos(2\pi ft), \quad T = T_0 + T_1 \sin(\pi y) \cos(\pi x) \cos(2\pi ft)$ $u = u_0 \sin^2(\pi x) \sin(2\pi y) \cos(2\pi ft), \quad v = u_0 \sin(2\pi x) \sin^2(\pi y) \cos(2\pi ft)$

Two differents MS

"High Mach" case:	Low Mach case:
$u_0 = 200 \text{ m/s}$	$u_0 = 2 { m m/s}$
$p_1=2 imes 10^3$ Pa	$p_1=2 imes 10^3$ Pa
$T_1 = 40$ K	$T_1=$ 40 K
$\mathrm{Re}_0 = 1.26 imes 10^7$	${ m Re}_0=1.26 imes 10^5$
${ m Ma}_0 = 5.8 imes 10^{-1}$	$Ma_0 = 5.8 \times 10^{-3}$

Objectives: Explore time order accuracy of IPCMSF on a "**full**" **subsonic compressible test-case** (but unphysical)

⁴extended from the incompressible one proposed by Guermond *et al.* 2006

	h solution ten	noral conver	Tence	00000000		
Introduction	Governing equations	Algorithm IPCMSF	Numerical Methods	V&V	Application	Conclusions

Comparison of temporal order accuracy of the anisothermal low Mach manufactured solution for IPCMSF and PCMSF⁴

MS parameters: $u_0=2$ m/s, $p_1=2 imes 10^3$ Pa, $\mathcal{T}_1=40$ K, $\mathrm{Re}_0=1.26 imes 10^5$ - $Ma_0 = 5.8 \times 10^{-3}$

First time step $\Delta t = 2 \times 10^{-4}$ s $\simeq \mathrm{CFL}_{\mathrm{ac}} = 1.78 \times 10^{1}$.

 $\mathsf{o}(||arepsilon_{
ho}||_{\infty})$

n/a 2.465

2.503

1.980

1.754

1.481

Mesh size 256^2 and $t_f = 2 \times 10^{-3}$ s,

IPCMSF orders

 $\mathsf{o}(||\varepsilon_p||_{\infty})$

n/a

1.537

1.559

1.873

1.930

1.678

implicit o2 centered for advection and diffusion

 $o(||\varepsilon_T||_{\infty})$

n/a

2.432

2.527

1.816

1.683

1.369

Principal result:

 $o(||\varepsilon_v||_{\infty})$

n/a

1.472

1.798

1.934

1.921

1.784

 Δt s

 2.0×10^{-10}

 $1.0 imes 10^{-4}$

 $5.0 imes10^{-5}$

 $2.5 imes10^{-5}$

 $1.3 imes 10^{-5}$

 $6.3 imes10^{-6}$

 Δt in s

• Both methods are 2nd order accurate in time,

• Error magnitudes with IPCMSF are lower, mainly for the pressure field

⁴Urbano et al., JCP, 456:111034, 2022

Introduction	Governing equations	Algorithm IPCMSF	Numerical Methods	V&V	Application	Conclusions			
O	OO	00	O	0000●000	00	00			
High Ma	High Mach solution temporal convergence								

Comparison of temporal order accuracy of the anisothermal high Mach manufactured solution for **IPCMSF and PCMSF**

Parameters: $u_0 = 200$ m/s, $p_1 = 2 \times 10^3$ Pa, $T_1 = 40$ K, $Re_0 = 1.26 \times 10^7$ - $Ma_0 = 5.8 \times 10^{-1}$

First time step $\Delta t = 1 \times 10^{-4}$ s $\simeq CFL_{ac} = 8.88$.

 $o(||\varepsilon_T||_{\infty})$

n/a

1.847

1.931

1.964

1.915

1.711

 $\mathsf{o}(||\varepsilon_{\rho}||_{\infty})$

n/a

1.684

1.790

1.911

1.894

1.703

Mesh size 256² and $t_f = 2 \times 10^{-3}$ s,

IPCMSF orders

1.770

1.947

1.929

1.897

1.689

 $\mathsf{o}(||\varepsilon_p||_{\infty})$

n/a

implicit o2_centered for advection and diffusion

Principal result:

 $o(||\varepsilon_v||_{\infty})$

n/a

1.851

1.907

1.934

1.873

1.598

 Δt s

 1.0×10^{-1}

 $5.0 imes10^{-5}$

 $2.5 imes10^{-5}$

 $1.3 imes 10^{-5}$

 $6.3 imes10^{-6}$

 $3.1 imes10^{-6}$

 Δt in s

- IPCMSF is 2nd order accurate in time while PCMSF is 1st order,
- Error magnitudes with IPCMSF are lower

Validatio						
Introduction	Governing equations	Algorithm IPCMSF	Numerical Methods	V&V	Application	Conclusions
O	OO	00	O	00000●00	00	00

Test-case	Geometry	Fluid	EoS	Physic
Miura test-case	1D	Supercritic CO2	NIST refprop	Piston effect
Incomp. convection $Ra = 10^6$	2D	Air	Perfect Gas	Natural Convection at $\Delta T = 1$ K
Comp. convection $Ra = 10^6 \mu = cst$	2D	Air	Perfect Gas	Natural Convection at $\Delta T = 720$ K
Comp. convection $Ra = 10^6 \mu(T)$	2D	Air	Perfect Gas	Natural Convection at $\Delta T = 720$ K
Comp. convection with IBM $Ra = 5 \times 10^6$	2D	Air	Perfect Gas	Natural Convection at $\Delta T = 120$ K
Heated channel flow $Re = 65$	2D	Air	Perfect Gas	Heat transfer in a pipe

Spatial convergence (Euler, o2_centered), $CFL_{ac} = 400$, $t_f = 20$ s

Mesh	Mass loss	order	NuL	order	Nu _R	order	Mean <i>p</i>	order	Mean v	order	Mean T	order
64×64	-2.648×10^{-2}	n/a	9.049	n/a	9.079	n/a	$-1.794 imes10^4$	n/a	$4.971 imes 10^{-2}$	n/a	$5.645 imes10^2$	n/a
128×128	-6.818×10^{-3}	n/a	8.910	n/a	8.918	n/a	$-1.545 imes10^4$	n/a	$4.860 imes 10^{-2}$	n/a	$5.682 imes10^2$	n/a
256×256	-2.061×10^{-3}	2.048	8.871	1.817	8.872	1.840	$-1.481 imes10^4$	1.961	$4.831 imes10^{-2}$	1.925	$5.693 imes10^2$	1.791
512×512	-1.061×10^{-3}	2.250	8.860	1.838	8.860	1.880	$-1.467 imes10^4$	2.140	$4.824 imes10^{-2}$	2.064	$5.696 imes10^2$	1.967
1024×1024	-8.805×10^{-4}	2.466	8.857	1.825	8.857	1.848	$-1.464 imes10^4$	2.257	$4.823 imes10^{-2}$	2.110	$5.696 imes10^2$	1.994
Extrapolation	$-8.405 imes 10^{-4}$	n/a	8.856	n/a	8.856	n/a	$-1.463 imes10^4$	n/a	4.822×10^{-2}	n/a	$5.697 imes10^2$	n/a

³P. Le Quéré *et al.*, ESAIM, 39(3):609-616, 2005

Spatial convergence (Euler, o2 centered), CFL_{ac}	=400.	$t_f = 20 s$
--	-------	---------------

Mesh	Mass loss	order	Nu _L	order	Nu _R	order	Mean p	order	Mean v	order	Mean T	order
64×64	-8.728×10^{-2}	n/a	8.628	n/a	8.656	n/a	$-1.756 imes10^4$	n/a	$5.846 imes 10^{-2}$	n/a	$6.001 imes10^2$	n/a
128×128	-3.366×10^{-2}	n/a	8.641	n/a	8.653	n/a	$-1.141 imes10^4$	n/a	$5.662 imes 10^{-2}$	n/a	$6.055 imes10^2$	n/a
256×256	-7.929×10^{-3}	1.059	8.682	-1.537	8.685	nan	$-8.576 imes 10^{3}$	1.116	$5.582 imes10^{-2}$	1.200	$6.075 imes10^2$	1.422
512×512	-2.249×10^{-3}	2.179	8.684	4.214	8.685	7.218	-7.912×10^{3}	2.093	$5.562 imes 10^{-2}$	2.020	$6.081 imes10^2$	1.701
1024×1024	-7.304×10^{-4}	1.904	8.685	2.506	8.685	3.018	-7.733×10^{3}	1.890	$5.557 imes10^{-2}$	1.858	$6.083 imes10^2$	1.827
Extrapolation	$-1.766 imes 10^{-4}$	n/a	8.685	n/a	8.685	n/a	$-7.666 imes 10^{3}$	n/a	$5.555 imes 10^{-2}$	n/a	$6.083 imes 10^2$	n/a

This test-case highlights the **importance of correct face field** material properties computations at boundaries (conductivity here)

⁵P. Le Quéré *et al.*, ESAIM, 39(3):609-616, 2005

Introduction Governing equations Algorithm IPCMSF Numerical Methods V&V Application Conclusio O OO OO OO OO OO OO	Application Conclusions 00 ●0 00
--	--

Application

768³ cells, Ra 10^9 , 8192 cpu criterion Q = 4e3, Temperature volume rendering

Strong scalability test (TGCC rome) on $1024^3 \sim 1 \times 10^9$ mesh size

сри	node	time/ite in (s)	Eff.
8192	64	6.199	1.000
16384	128	3.962	0.782
32768	256	3.811	0.407
10.01			/

IPCMSF notus $55\times10^3~\text{cells/cpu}$

0 00 00 00 0 00 00 0	Introduction Governing	g equations Algorithm IP	PCMSF Numerical Me	ethods V&V	Application	Conclusions
-----------------------------	------------------------	--------------------------	--------------------	------------	-------------	-------------

Conclusions and futurs works

Introduction	Governing equations	Algorithm IPCMSF	Numerical Methods	V&V	Application	Conclusions
O	OO	00	O	00000000	00	O●
Conclusio	ons and Futurs	s works				

Conclusions

- Verifications & Validation of the IPCMSF algorithm
- 2nd order accurate in time for all primitive variables
- Compatibility of temperature / pressure / density (Kwatra *et al.*, JCP, 228(11), 2009)

Futurs works on IPCMSF

- $\bullet\,$ Extension to open flows configuration with specific φ outflow ${\rm BC^6}$
- Extension to 2nd order Immersed Boundary Method⁷
- Developping a full explicit RK method based on IPCMSF
- Extension to two-phase flow with mass and heat transferts

 $19\,/\,19$

⁶A. Poux *et al.*, JCP, 230(10):40114027, 2012 ⁷de Palma *et al.*, CF, 35(7):693-702, 2006