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Abstract: In this study, the immersed-boundary method developed in “Kasturi Rangan, M. L.
N. V., and Ghosh, S. A Face-Based Immersed Boundary Method for Compressible Flows Using a
Uniform Interpolation Stencil. Frontiers in Mechanical Engineering, Vol. 8, No. October, 2022, pp.
1–17” for compressible viscous flows is further improved to account for better mass conservation. In
this method, a face-based solution forcing approach is considered to achieve local conservation in the
control volumes near the embedded boundary leveraging the finite-volume framework. However,
in this approach, there is a lack of mass (or any convective flux) conservation on two accounts:
Lack of geometric conservation and a source-sink effect due to net mass inflow/outflow in interior
cells near the immersed boundary. In this work, we look at a two-fold approach to address these
issues. Firstly, a cut-cell type approach is proposed to determine the effective wetted area of a cell
face intersected by the immersed boundary to improve geometric conservation. Secondly, the mass
(and other convective) flux at cell faces where solution forcing is done is corrected to account for
the mass source/sink effect. The proposed method(s) are validated against standard inviscid and
viscous compressible flow test cases. The results are compared with simulations from literature
using contours of flow properties, surface pressure. Finally net mass balance in the computational
domain is determined for the different test cases and compared with the baseline formulation to
check for improvement in mass conservation.

Keywords: Immersed boundary method, Face-based forcing, Mass conservation, Sharp Interface
method, Computational Fluid Dynamics.

1 Introduction
Even with the advent of high-performance computing and parallelization with CPU/GPUs, there is still
a need to mitigate the excessive use of computational resources that add to the cost. The computa-
tional cost increases according to the geometry’s complexity and when the body is in motion. This
can be attributed to the grid generation process involved. Grid generation over a complex geometry is
challenging, and regenerating the grid at every time step for moving body problems is computationally
exhaustive. Therefore, it is preferred to devise methods that do not involve repetitive grid generation
without compromising the accuracy and efficacy of the solvers involved. Immersed boundary methods
(IBMs) have emerged as powerful tools to address this challenge by enabling the simulation of fluid
flow around arbitrarily shaped boundaries without the need for complex mesh generation. Originally
developed by Peskin [1, 2, 3] for modeling heart valves, IBMs have since evolved into a diverse family of
techniques that find application across various fields, from bio-fluid dynamics to aerospace engineering.
These methods aim to achieve the accuracy offered by existing body-fitted grid algorithms while reduc-
ing the computational burden. Fundamentally, an immersed boundary method represents the embedded
boundary as a collection of points/markers, or connectted line segments (2D) or facets (3D) that move/
remain independant of the underlying Cartesian grid. This decoupling of the boundary representation
from the (volume) grid allows for efficient simulations of flows past intricate geometries, including moving
or deforming boundaries.

Immersed boundary methods are broadly categorized into two types: continuous forcing and direct-
forcing methods. Continuous forcing methods involve using a forcing function to incorporate the "body’s
effects" into the fluid domain. The earliest use of this method is found in the work by Peskin [1] and
subsequently used by Goldstein et al.[4]. In contrast, direct-forcing methods directly modify variables
near the immersed boundary to enforce the boundary conditions. These methods excel at capturing
sharp object boundaries that are often diffused in continuous forcing methods due to the smoothing
effect of the forcing function. Moreover, unlike continuous forcing methods, which are constrained by
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time-step limitations[5, 6], these methods do not encounter such issues. Direct-forcing methods have
gained prominence in immersed boundary modeling, with numerous variants proposed in the literature
[7, 8, 9, 10, 11]. However, direct forcing methods [12] encounter challenges with mass conservation, pri-
marily due to lack of geometric conservation and solution forcing (instead of being obtained from solving
the governing equations) in some cells. Efforts such as those by Kim et al. [8] have proposed augmenting
direct forcing methods with mass source/sink terms in the continuity equation to mitigate non-physical
flux across immersed boundaries in incompressible flow scenarios. This issue of lack of conservation is
however not present in cut-cell methods, a type of Cartesian grid approach wherein the cell boundaries in
the vicinity of the IB are reconstructed to adhere to the embedded geometry. However, these methods are
computationally intensive and the formation of low-volume split cells pose a significant issue that various
methods have attempted to address using techniques like cell-merging and cell-linking[13, 14, 15, 16, 17].
On the other hand, direct forcing methods are favored for their straightforward formulation and imple-
mentation, making them popular for simulating complex geometries and moving bodies.

This work extends an immersed boundary method [18] developed by the authors in a finite-volume
framework that uses a face-based solution forcing in the vicinity of the immersed surface. Solution forc-
ing at cell faces allows the integration of the discretized equations in all the fluid cells, thus allowing
better adherence to the conservation of mass, momentum, and energy. The extension of this face-based
approach involves two main aspects. Firstly, a cut-cell-type approach is proposed to determine the ef-
fective wetted area of a cell face intersected by the immersed boundary, aiming to enhance geometric
conservation. Secondly, corrections are applied to the mass (and other convective) flux(es) at cell faces
where solution forcing occurs, accounting for mass source/sink effects. This flux correction, often re-
ferred to as "virtual mixing" in cut-cell approaches, is implemented in neighboring immersed boundary
cells. The mixing technique, originally introduced by Hu et al. [19] and subsequently adopted by Meyer
[20] and Seo et al. [21], is adapted in our solver. The exact mixing approach used in our work differs
from those reported in the literature but aims to be easy to implement and improve the conservation
properties of the existing solver. This integration aims to leverage the advantages of the cut-cell method
within the context of the direct-forcing approach. The proposed method, as such, can be considered a
hybrid of cut-cell and flow reconstruction methods.

This paper is structured into sections that delineates in a sequential manner the proposed IBM and
its approach to improve mass conservation. The outline of the rest of the paper is as follows. The
section(s) [2.1,2.2] provides an overview of the governing equations and details about the flow solver.
Following this, a concise summary of the existing immersed boundary methodology is presented in the
section 2.3. The subsequent section 2.4 is divided into two main parts: one focusing on geometric conser-
vation (see section 2.4.1) and the other on flux redistribution (see section 2.4.2). Results from test cases
investigated as part of this paper are presented and discussed in the subsequent section 3. Section 3.6
presents a quantitative analysis of the proposed IB methods in terms of net mass balance in the domain
and the comparison of quantities like Mach number, stagnation pressure, lift, and drag coefficients with
literature. Finally, conclusions drawn from the test cases are presented in section 4.

2 Computational Framework
In this work, the Navier–Stokes equations are discretized using a finite volume method and solved on
structured grids. The governing equations, overview of the solver and the IB methodology are briefly
discussed in this section.

2.1 Governing equations
In this work, the Navier-Stokes equations are discretized using a finite-volume method and solved on
structured grids. The governing equations and an overview of the solver are briefly discussed in this
section.

∂q⃗c
∂t

+∇ · (F⃗I − F⃗V ) = 0 (1)

In the above equation, F⃗I constitutes the inviscid fluxes and F⃗V constitutes viscous fluxes. The vector
q⃗c consists of the conservative variables, which include mass, momentum, and energy per unit volume.
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q⃗c =


ρ
ρu
ρv
ρw
ρEt

 (2)

F⃗I =


ρu

ρu2 + p
ρuv
ρuw
ρuHt

 î+


ρv
ρuv

ρv2 + p
ρvw
ρvHt

 ĵ +


ρw
ρuw
ρvw

ρw2 + p
ρwHt

 k̂ (3)

F⃗V =


0
txx
txy
txz

utxx + vtxy + wtxz − qx

 î+


0
tyx
tyy
tyz

utyx + vtyy + wtyz − qy

 ĵ +


0
tzx
tzy
tzz

utzx + vtzy + wtzz − qz

 k̂ (4)

In the equations above, u, v, and w are the Cartesian components of velocity along the X, Y , and Z
directions, respectively, ρ is the fluid density, p is the fluid pressure and Ht is the total specific enthalpy.
Also, ˜̃t is the laminar stress tensor and q⃗ is the laminar heat flux. In order to close the equations, the
equation of state for an ideal gas is used:

P = ρRT (5)

where R is the specific gas constant for air. Molecular viscosity is modelled with Sutherland’s law, and
a laminar Prandtl number of 0.72 is used for air.

2.2 Flow solver
FEST-3D (Finite Volume Explicit Structured 3-Dimensional) [22], an in-house developed parallel code
for structured grids based on a finite-volume framework, is used. This solver discretizes the variable
density, 3D Navier-Stokes equations to simulate compressible laminar flows, and Favre-averaged Navier-
Stokes equations for compressible flows. The capabilities of this solver range from laminar to turbulent
regimes comprising various spatial and time-discretization schemes. In the present work, the solver is
run with HLLE [23, 24] scheme for inviscid flux calculation, MUSCL for second-order reconstruction
(spatial) as presented in [25] and RK4 for time integration. All the simulations presented in this work
are 2D computations. Molecular viscosity is modeled with Sutherland’s law, and a laminar Prandtl
number of 0.72 is used for air. The scope of the work presented in this paper is specific to laminar and
two-dimensional flows.

2.3 Immersed Boundary Method (Baseline Approach)
This section describes the Immersed Boundary (IB) method used in this work [26]. This is a direct-
forcing-approach-based IB method involving face-based reconstruction. Face-based reconstruction is
expected to achieve local conservation in control volumes by leveraging a finite-volume framework. As
such, the solution for all the cells external to the IB satisfies the discretized governing equations. The
face-based method takes inspiration from [27, 28], which was developed for inviscid flows and later
extended to the viscous flows in the compressible regime. Details of the present method are explained
in the following section(s).

2.3.1 Cell classification

This section outlines the methodology employed by IBM in this study [26]. The primary step in any IB
method is classifying cells as exterior and interior. To do this, the immersed boundary is represented
by a set of line segments, with outward normals specified along with the coordinates of their endpoints.
This information is utilized for cell classification. Cells are categorized as field and interior cells based
on a signed-distance algorithm. Band cells are then identified as interior cells sharing a face neighbor
with a field cell. Furthermore, band faces are recognized as cell interfaces shared by field and interior

3



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

(band) cells. The primary computations of this IB method revolve around enforcing the solution at
these faces to ensure compliance with boundary conditions at the immersed surface. Fig. 1a illustrates
the cell classification of a section of a grid with an immersed surface, which is represented by a series
of line segments. Furthermore, the cell classification for the double ellipse configuration (see Fig. 1b
investigated in this work is presented, which illustrates how the flow solver interprets the immersed
surface. The cells in the entire domain are classified as field cells (white), band cells (grey), and interior
cells (blanked out). Additionally, the band faces (colored red) are also shown in the figure.

(a) Schematic indicating cell classification.
(b) Cell classification for a double ellipse
configuration.

Figure 1: Cell classification

2.3.2 Variable reconstruction

The process of solution reconstruction at a band face [26] is achieved by first constructing an interpolation
point (shown in Fig. 2) along the normal to the immersed surface. Data is interpolated from the
surrounding fluid cells onto the interpolation point using inverse distances as weights, as shown in the
Fig. 2. In contrast to some existing immersed boundary methods[29, 28], the interpolation point is
not fixed at the same predetermined distance along the normal to the immersed surface. The idea is to
determine the location of the interpolation point based on the local geometry of the immersed surface and
the local grid size instead of fixing it at a certain distance based on a certain algorithm, as mentioned in
[26]. This ensures that more field cells are used to interpolate the primitive variables at the interpolation
point. Once data is reconstructed at the interpolation point, velocity and other primitive variables are
reconstructed at the band face according to the desired boundary condition on the immersed surface.
The variable reconstruction at the band face is performed next and is briefly described here.
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Figure 2: Stencil for determination of interpolation point.
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• Velocity reconstruction (Slip wall)

u⃗face = u⃗IP +

([
1− dface

dIP

]
(u⃗⊥,IB − u⃗⊥,IP ) · n̂IB

)
n̂IB

• Velocity reconstruction (No-slip wall)

u⃗face = u⃗IB + (u⃗IP − u⃗IB)
dface
dIP

• Pressure & Temperature reconstruction

∂P

∂n

∣∣∣∣
IB

= 0, Pface = PF

Adiabatic wall:Tface = TF

Isothermal wall:Tface = Twall + (TIP − Twall)
dface
dIP

• Gradients at band faces

∇⃗ϕ =
2(ϕIP − ϕface)

−dIP + dface
, ϕ = [ρ, u, v, P ]

Here dIP and dface are the signed distances 1 from the interpolation point and the band face (center) to
the immersed surface. Also, in the slip-wall velocity formulation, u⊥ indicates the component of velocity
normal to the immersed surface. The density at the face is reconstructed using an ideal gas equation.

2.4 Addressing mass conservation
2.4.1 Effective area method (EA-IBM)

This method is the first step towards improving mass conservation by improving geometric conserva-
tion/fidelity within the face-based direct-forcing Immersed Boundary (IB) approach. The fundamental
concept of this method is to integrate the advantages of the cut-cell method, which offers better mass
conservation, and the flow reconstruction methods (direct-forcing), which are relatively easy to imple-
ment.

Figure 3: Cell classification with effective area highlighted

Fig. 3 shows an immersed boundary (black line) that divides the mesh into internal (marked ‘I’) and
external (marked ‘F’) cells. Further, internal cells adjacent to an external cell are termed as band cells
(marked ‘B’). In the baseline IB method [26], the whole face area was considered while evaluating the

1In this work, the signed distance from a point to the immersed surface is considered negative if the point is external to
the immersed boundary.
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fluxes at a band face. Herein, we propose to use the partial area of the band face (shown in red) that
physically contributes to the convective flux at that face. Specifically, the idea is to assign different areas
to different flux terms based on the physical nature of the flux. To elaborate, while the combination of
red and blue areas (total area of a band face), as shown in Fig. 3 is used for pressure force, viscous stress,
and heat fluxes, only the areas marked in red are used for convective fluxes. It is to be noted, though, that
the exact boundary of the immersed object is never reconstructed as in a cut-cell method in this approach.

In every scenario, the key task is to identify how the cell faces intersect with the Immersed Bound-
ary (IB), enabling the determination of the effective area for convective flux (highlighted in red). This
adjustment of cell areas specifically targets band faces, and the cell volumes of the corresponding (adja-
cent) field cells are also adjusted. Similar to the baseline IB method, this approach doesn’t evolve the
solution within interior cells over time. To efficiently compute effective volumes and areas, a bounding
box encompassing the immersed object is considered based on cell classification. Within this bounding
box, the intersection points of the IB classifier (represented as line segments) and the faces are deter-
mined for all field cells. Subsequently, the portion of a face entirely within the fluid domain is identified.
If a face is entirely within the IB, its effective area is deemed zero. Conversely, if the face lies entirely
outside the IB, its effective area remains unchanged from the original. A point to note here is that cell
area modifications may also be required in faces other than band faces, which is also considered here.
Additionally, the volume for field cells within the bounding box is computed using the standard shoe-lace
formula [30].

(a) IB (A) (b) IB (B) (c) IB (C)

Figure 4: Verification cases

Fig. 4 shows the contour plots of the effective volume calculated for three different immersed geometries.
These verification cases are designed to mimic different scenarios encountered in determining the effective
area and volume. IB (A) shown in Fig. 4a is a case where the geometry coincides with the grid lines.
In this case, a volume change is not expected, and the same is obtained after the volume calculations.
IB (B) shown in Fig. 4b is a scenario where the geometry goes through the diagonal of a grid cell,
and IB (C) in Fig. 4c is a case where there are numerous single intersections on the faces and multiple
(two) intersections on a particular face. All the contour plots shown in 4 show the newly calculated cell
volumes as a fraction of the original cell volumes, and it is observed that the volume of any cell does
not fall below 50%. The primary idea herein is to improve geometric conservation near the immersed
boundary by having a better approximation of the cell face areas and volume that contribute physically
to the development of the flow.

2.4.2 Flux redistribution (EA-IBM+)

The approach mentioned in the previous section was aimed at improving geometric conservation in the
face-based immersed boundary (IB) method developed by the authors [26]. A further development is
proposed to improve the conservation properties of the present IBM, including mass conservation. The
approach adopted here involves redistribution (or a correction) of the convective fluxes in the band cells
to mitigate the source-sink phenomenon resulting from net inflow/outflow within interior cells. To il-
lustrate, consider the cumulative convective fluxes at the band faces depicted in Fig. 5. For perfect
conservation, the sum of these fluxes should be zero to prevent mass accumulation/overflow in/from the
gray-shaded region of the band cell. However, this conservation is not inherently assured in the existing
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framework. In this paper, we attempt to address this issue by altering the computed convective fluxes 2

at these interfaces.

Figure 5: Schematic of mass accumulation/overflow in a band cell.

The accumulation/overflow of mass in band cells for two (most) likely scenarios are shown in Fig. 6.
Please note that here, by accumulation, we refer to the net accumulation of mass in a band cell, which
acts as a sink for the outer flow in such case. Conversely, by overflow, we refer to the net efflux of mass
in a band cell, which then acts as a source for the outer flow in such case. The first scenario in Fig. 6
involves two band faces across which flow moves in/out to/from a band cell through the areas marked
in red (wetted or ‘cut’ areas), which can lead to a net (rate of) accumulation/overflow of mass in/from
that band cell. In contrast, the second scenario has in addition to the band faces, a face that is partially
wetted, and as such allows convection of fluxes across it. This face, termed the "Pseudo" band face
(shown in green), is shared by two adjacent band cells.

The approach adopted for redistribution of the accumulation/overflow of mass at each iteration for
these cases is as follows: The first step in the redistribution involves determining the net residual (mass
and momentum) in a band cell. The net residual within the band cell, represented by ℜb, is defined as
in 6. For the first situation in Fig. 6, it is done by summing up the convective fluxes through the band
faces that enclose the band cell. For the subsequent redistribution/correction of the convective fluxes at
band faces in the particular band cell, the residual ℜb is partitioned using a weighted approach. The
weights are constructed by multiplying the face-normal velocity with the wetted area of each band face
in the band cell. Thus, once ℜb is determined for a specific band cell; it is subsequently redistributed
using the Eqs.(7-8).

ℜb =

∫
S

(Gi · n̂)dS : G = {ρu, ρuu, ρuv} (6)

wi = |V⃗i · n̂|Ai (7)

G
′

i = Gi ± ℜbi

Σwi
wi (8)

Here, G is the convective flux vector, n̂ is the unit normal at the face, ℜb is the net residual of convective
fluxes, w is a weight, V⃗ is the velocity vector, and G

′
is the corrected flux vector after the redistribution.

Here, the subscript i refers to the quantity determined at a band face in the band cell. However, the
process differs for the situation shown in Fig. 6(b) in the presence of pseudo-band faces. A point to
note here is that a loop through the band cells (and not band faces) is used to correct the flux at a band
face. While the flux correction at a band face is not repeated in this approach (as a band face cannot be
shared by two band cells by definition), the situation with pseudo band faces is different as it is shared
by adjacent band cells. As such, for cells having a pseudo band face with a non-zero wetted area, the
following process is adopted. Initially, during each iteration, no flux is allocated to the pseudo band
faces. Let us consider that in Fig. 6 (b), the band cell on the left is first visited in the loop over band
cells for convective flux correction at band faces. The net residue residual in this cell is now entirely
considered as a flux correction for the pseudo-band face. Subsequently, when the band cell on the right

2Mass and momentum flux redistribution has been considered in the present study
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(a) Configuration 1 (b) Configuration 2

Figure 6: Schematic of different configurations arising in the mass source/sink redistribution.

is reached in the loop, the net residual, considering the (now non-zero) convective flux at the pseudo
band face and the band face, is provided as a correction (only) to the band face.
The proposed IBM with improved conservation properties can be summarized as follows,

1. Calculate the flux vector across all faces within the fluid domain.

2. Reconstruct the primitive variables at the band faces and determine the flux vector.

3. Determining the cut-areas and volumes of cells intersected by the immersed boundary.

4. Adjust/correct flux at band faces to enforce improved conservation of mass flux.

3 Results and Discussion
The performance of the proposed methods is assessed and compared on the test cases listed in Table 1.
These test cases include three inviscid and two viscous cases ranging from high subsonic to supersonic
speeds. Results are compared with CFD predictions from the literature using pressure contours, Mach
number contours, and surface pressure plots. In addition to these, the convergence history of two test
cases - bump in a channel and double ellipse is also presented. For each of the test cases, the grid size
mentioned here refers to the ‘fine’ grid used for the test case. In addition, the simulations were also
performed on ‘medium’ and ‘coarse’ grids, obtained by successively coarsening the grids starting with
the fine grid.

Table 1: Test cases

Validation cases

Body M∞ and α Re Flow Grid size

Bump in a channel 0.675, 0◦ N/A Transonic
(Inviscid)

192×64,
(Non-uniform)

Cylinder 3,0◦ N/A Supersonic
(Inviscid)

200×800,
(Uniform)

Double ellipse 8.15, 30◦ N/A Hypersonic
(Inviscid)

200×200,
(Uniform)

NACA0012 0.8, 0◦ 500 Transonic
(Viscous)

648×1024,
(Non-uniform)

Cylinder 2, 0◦ 300 Supersonic
(Viscous)

632×432,
(Non-uniform)
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3.1 Bump in a channel
This is an inviscid flow past a bump in the channel. The flow is transonic with the inlet Mach number,
pressure and temperature are equal to 0.675, 1.0e5 Pa and 300 K respectively. The channel is 3.0 m long
and 1.0 m in height. The bump is located halfway along the length on the lower wall. The thickness-to-
chord ratio of the bump is 10%. The grid used is of the size 192 × 64 and the spacing same as in [31].
The schematic of the boundary conditions applied and the non-uniform grid used is shown in the Fig.
7.

Figure 7: Schematic of domain with boundary conditions indicated (left) & Non-uniform mesh of size
192 x 64 (right) (showing alternate grid lines in both directions); IB shown by yellow line. - Transonic
flow over a bump (inviscid).

The Mach number distribution plots shown in Fig. 8a provide insights into the performance of the IB
methods. With the use of EA-IBM and EA-IBM+, the Mach number predicted at the ends of the bump
is lower compared with the body-fitted simulations. Moreover, the predictions on the upper surface of the
channel compare favorably with CUS-IBM from the literature; however, the baseline method remains
closer to the results obtained from body-fitted grid simulations for this test case. The residue norm
comparisons shown in the Fig. 8 shows that EA-IBM and the EA-IBM+ improves the convergence
across the grid levels.

(a) (b)

Figure 8: Mach number distribution (left). Residue norm comparison of the IB methods across grid
levels - Transonic flow over a bump (inviscid).

The pressure contours are compared in Fig. 9. These plots demonstrate that all IB methods accurately
predict the shock structure and shock location compared to the literature. No significant qualitative
difference was observed across the IB methods in these contour plots.
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(a) Baseline IBM (b) EA-IBM

(c) EA-IBM+ (d) CUS-IBM [31]

Figure 9: Pressure contours - Transonic flow over a bump (inviscid).

3.2 Inviscid supersonic flow past a circular cylinder
This case simulates inviscid flow past a cylinder with intel mach M∞ = 3.0, P∞ = 103320.0Pa and
T = 300K This is a external flow computation past a circular cylinder. A supersonic flow of Minlet = 3,
Pinlet =103320Pa and T = 300K over a half cylinder is simulated. The computational domain is
[−1m, 0m] × [−2m, 2m], and the cylinder is centered at (0m, 0m) with the radius of 0.5m. A uniform
cartesian mesh of 200 × 800 cells along x and y directions is used. Boundary conditions implemented
for the domain and the uniform mesh (IB rendered as a yellow curve) are presented in the Fig. 10.

Figure 10: Schematic of domain with boundary conditions indicated (left) & Near view of the grid
showing every other pair of grid lines (right);IB shown by yellow line.

The surface pressure plot shown in the Fig. 11 compares the predictions of the different IB methods with
the literature. It can be observed that all the methods agree excellently, and there are no irregularities
in the surface data using different methods. Additionally, mach number contours are shown in the Fig.
12 for qualitative representation of the solution. Contour plots predict the flow structures properly and
compare well with the literature.
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Figure 11: Comparison of surface pressure distribution - Flow past a cylinder (inviscid).

(a) Baseline IBM (b) EA-IBM

(c) EA-IBM+ (d) CUS-IBM [31]

Figure 12: Mach number contour - Flow past a cylinder (inviscid).

3.3 Flow past a double ellipse
This test case is considered to determine the performance of the IB solver for the flow at a high angle of
attack. The free stream properties are M∞ = 8.15 at a 30◦ angle of attack with respect to horizontal,
P∞ = 101325.0, T∞ = 273.0K. The dimensions of the double ellipse geometry are the same as in [32].
The domain considered is of the size [-0.1,0.1]x[-0.1,0.1] with the double ellipse immersed in the domain.
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Figure 13: Schematic of domain with boundary conditions indicated (left) & Uniform mesh of size 200
x 200 (right) (showing alternate grid lines in both directions); IB shown by yellow line. - Flow past a
double ellipse (inviscid).

A uniform grid with 200 × 200 cells in both x and y directions has been used in our work, and the
mesh and boundary conditions used are shown in the Fig. 13. The results are compared with Cartesian
grid IB simulations conducted by [33] using a similar number of control volumes. Fig.14a presents a
comparison of the surface pressure coefficient, demonstrating that all three IB methods align closely with
the literature and notably lean towards the results obtained from the body-fitted and non-uniform grid
solution used in the comparison. However, minor deviations in the surface pressure are observed with
the EA-IBM+.

(a) (b)

Figure 14: Comparison of pressure coefficient(left).Residual comparison of the IB methods across the
grid levels(right) - Flow past a double ellipse (inviscid).

Additionally, the residual norms show improvement with both the EA-IBM and EA-IBM+ compared
to the baseline method, which experiences convergence issues at coarse and medium grid resolutions.
Overall, faster convergence is observed with EA-IBM and EA-IBM+. Regarding Mach number contour
plots, all IB methods accurately capture the detached shock at the leading edge of the nose. While the
canopy shock is well captured by all methods without grid clustering, it appears slightly smeared in the
case of EA-IBM+. This observation is evident in the Mach contour plot (see Fig. 15), which shows
satisfactory resolution of both the bow shock and canopy shock.

12



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

(a) Baseline IBM (b) EA-IBM

(c) EA-IBM+ (d) IB method [33]

Figure 15: Mach number contour - Flow past a double ellipse.

3.4 Transonic viscous flow past NACA0012 airfoil
This is a laminar flow simulation with a large separation vortex near the trailing edge of the airfoil.
Free stream flow parameters are: M∞ = 0.8, P∞ = 103320Pa, T∞ = 300K, Re∞ = 500 and the angle
of attack is 10◦. This test case is chosen as the flow is transonic and involves flow separation with a
recirculation bubble forming on the suction side of the airfoil. This tests whether IBM can accurately
predict flow separation, which is crucial for the reliable prediction of viscous flows. The computations for
this simulation are carried out on a non-uniform grid of size 648 × 1024 in x and y directions, respectively.
The grid spacings used are the same as in [34].

Figure 16: Schematic of domain with boundary conditions indicated: Flow past airfoil NACA0012 (left);
& Closeup view of 648 x 1024 non uniform mesh (right) (showing alternate grid lines in both directions);
IB shown by yellow line.

In Fig. 17, the surface pressure coefficient predictions from different immersed boundary (IB) methods
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Figure 17: Comparison of surface pressure distribution - Transonic flow past NACA0012 airfoil (viscous).

align well with the literature. The baseline IBM and EA-IBM show consistent agreement with literature
across most regions of the airfoil, although minor deviations are evident at the airfoil’s leading edge.
EA-IBM+ follows the overall trend but exhibits deviations both at the leading edge and on the upper
surface where flow separation occurs. These observations are also evident in the Mach number contour
plots shown in the Fig. 18. Specifically, EA-IBM+ does not capture the recirculation bubble beyond
the trailing edge, whereas other methods accurately reproduce the recirculation zones and bubbles, same
as in the literature [34].

(a) Baseline IBM (b) EA-IBM

(c) EA-IBM+ (d) [34]

Figure 18: Comparison of mach number contours - - Transonic flow past NACA0012 airfoil (viscous).
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3.5 Supersonic viscous flow past circular cylinder
Flow conditions for this external flow simulation are: M∞ = 2.0, P∞ = 103320 Pa, T∞ = 300 K, and
Re = 300. The domain extent is 60 D × 40 D (D =1m), same as in [31] [35] and the cylinder is centered
at (24,20). Non-uniform mesh with the grid size 632×432 along x and y directions was used. There is a
uniform mesh region around the cylinder of size 1.7 D × 1.7 D with grid spacing 0.025D same as in [36].
This grid spacing of the finest grid used is considered sufficient to capture the boundary layer effects for
the specific Reynolds number. The domain with the boundary conditions employed and the grid are as
shown in the Fig. 19.

Figure 19: Schematic of domain with boundary conditions indicated (left) and close-up view of non-
uniform grid (right) (showing alternate grid line in both directions);IB shown by yellow line.

The pressure distribution plot shown in the Fig. 20 compares the different IB methods with the literature.
It can be observed that there are no irregularities in the surface pressure predictions from any of the IB
methods, and they compare well with the literature. Also, no significant difference across the methods
can be observed. Similar conclusion can be drawn from the density contour plots shown in the Fig.21.
Qualitatively, all the methods predict the bow shock accurately and compare well with the literature.

Figure 20: Comparison of surface pressure distribution - Supersonic flow over a cylinder (viscous).
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(a) Baseline IBM (b) EA-IBM

(c) EA-IBM+ (d) [36]

Figure 21: Density contour plots - Supersonic flow over a cylinder (viscous).

3.6 Performance study
To quantitatively assess the effectiveness of the baseline-IBM, EA-IBM, and EA-IBM+ in terms of
mass conservation, the net mass efflux is computed. This metric quantifies the mass source/sink effect
introduced by the immersed boundary, calculated as the difference between net outflow and net inflow
across all boundaries. The computed values using baseline IBM, EA-IBM, and EA-IBM+ are presented
in the table below.

Table 2: Comparison of net mass balance in the domain obtained using baseline IBM, EA-IBM and
EA-IBM+.

Test case BSL EA-IBM EA-IBM+ Grid level

Bump in a channel (Inviscid)

4.31E-03 4.81E-03 1.46E-15 Grid - C

3.39E-03 1.42E-04 4.18E-16 Grid - M

4.61E-04 7.30E-06 6.27E-16 Grid - F

Cylinder (Inviscid)

6.68E-04 1.29E-03 6.66E-06 Grid - C

2.58E-04 8.62E-04 7.98E-04 Grid - M

1.58E-05 4.83E-04 1.52E-06 Grid - F

Double Ellipse (Inviscid)

6.06E-03 7.87E-03 1.65E-14 Grid - C

7.11E-03 3.74E-03 2.38E-16 Grid - M

1.73E-03 2.37E-03 3.65E-10 Grid - F

NACA 0012 (Viscous)

1.76E-05 9.40E-06 2.37E-07 Grid - C

3.76E-05 4.40E-05 4.03E-05 Grid - M

6.35E-04 6.48E-04 1.46E-03 Grid - F 3

Cylinder (Viscous)
1.29E-04 7.75E-05 1.33E-06 Grid - M

5.07E-04 5.21E-04 1.04E-06 Grid - F
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Note: Here, Grid-F is the finest grid for the specific test case. Grid-M and Grid-C are subsequently
generated from Grid-F by excluding alternate grid points—Grid-M skips every second grid point in both
x and y directions, whereas Grid-C skips every fourth grid point in the same directions.

From Table 2, it can be observed that the use EA-IBM+ improves the net mass balance, showing
significant improvement in inviscid cases (approaches machine epsilon). However, the effectiveness of
these methods in improving the net mass balance in viscous cases appears limited. Given that viscous
fluxes dominate near the IB, the implementation of effective area and subsequent flux redistribution seem
to have less effects in these scenarios. For all the test cases considered, the improvement in the net mass
balance from the baseline IBM to EA-IBM+ is most notable for the coarse grid simulations In summary,
the EA-IBM and EA-IBM+ methods maintain or improve the net mass balance (at least by order of
one) across most grid levels.

Table 3 compares flow quantities like Mach number, stagnation pressure, lift and drag coefficients pre-
dicted by the different IB methods investigated in this work. Quantitative comparison with results from
literature/ theoretical values shows that the maximum errors in the present method are less than 7 %.

Table 3: Summary of the quantitative comparison of specific quantities obtained using baseline IBM,
EA-IBM and EA-IBM+ with the literature.

Test case Quantity BSL EA-
IBM

EA-
IBM+

Reference

Bump in a channel (Inviscid)
Exit Mach
(bottom)

0.632 0.594 0.637 0.615 [37]

Exit Mach
(top)

0.686 0.689 0.689 0.67 [37]

Cylinder (Inviscid) Stagnation
pressure (×

1e5 pa)

12.464 12.467 12.446 12.462
[Analytical]

Double ellipse (Inviscid) Stagnation
pressure (×

1e6 pa)

8.669 8.652 8.638 8.712
[Analytical]

NACA00012 (Viscous)
cl 0.4172 0.4175 0.4415 0.4363 [34]

cd 0.2769 0.2749 0.2615 0.2752 [34]

Cylinder (Viscous) cd 1.5456 1.5597 1.5551 1.5477 [36]

4 Conclusions
An extension of an existing immersed-boundary method – developed earlier by the authors –aimed at
improving mass conservation is presented here. Specifically, efforts have been made to improve geometric
conservation (EA-IBM) and address mass source/sink effects (EA-IBM+) in the IBM. These methods
are tested against three inviscid test cases and two viscous test cases with speeds ranging from high
subsonic to supersonic regime. A comparison was made using contour plots and surface data from the
literature. Overall, no significant difference in the contour plots can be observed across the methods.
Surface parameters closely matched literature values, with slight deviations noted in specific cases like
the double ellipse (inviscid) and NACA0012 airfoil (viscous) scenarios using EA-IBM+. Furthermore,
the flow metrics such as exit Mach number, stagnation pressure, lift, and drag coefficients were compared
against literature values, with the errors in the present method below 7%. Also, the net mass balance
in the domain is compared to gauge the improvement in the mass conservation. It has been found
that there is a significant improvement in the inviscid cases, with the values approaching theoretical

3These results are not fully converged at the time of reporting.
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zero for two test cases. However, effectiveness in viscous cases was somewhat constrained due to the
predominant influence of viscous fluxes near the immersed boundary, whereas these methods primarily
addressed convective fluxes. In summary, a comparison with the baseline IBM indicates that EA-IBM
and EA-IBM+ maintain or improve net mass balance by at least an order of magnitude across various
grid sizes. Future research will focus on flux redistribution within the energy equation (in addition to
continuity and momentum) and testing the performance of these methods in problems involving moving
bodies.
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