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(Paredes et al, JSR, 2018, data A1-11 from Stetson AIAA
1983)

(Liu et al. PoF, 2022)

1.Background and Motivation

 When the nose Reynolds number exceeds a certain value, the transition was 

triggered before the appearance of unstable modes. 

First/Second  
mode

Nonmodal 
disturbance
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(Paredes et al. Journal of 
Space and Rockets 2018)

1.Background and Motivation

• High-frequency 

disturbances 

(Second mode)

• Low-frequency 

disturbances ?

0.15 R mm 5.1 R mm

9.5 R mm 12.7 R mm

25.4 R mm 50.8 R mm

Solid black line: Transition location

 PSD for blunt cones with 

different nose radius (R)
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(Kennedy et al. AIAA 2019)

1.Background and Motivation

 Wind tunnel experiment over blunt cones 

(Schlieren images) Rope-like structures

Elongated structures
 Wisp  Structures

Second mode
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1.Background and Motivation

• Character of optimal 

disturbances (modal and 

nonmodal)

• The effect of wall temperature, 

bluntness

• Transient growth mechanism 

(Orr/Lift-up mechanism)

• Entropy-layer disturbances, low-

frequency disturbances

 Blunt-tip Wedge - Research gap

(Wan et al. AMM
2018)
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2. Method-Stability analysis
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• Optimal gain

(Hao et al. JFM 2023)

(Guo et al. JFM 2023)
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2.54 R mm 79.15 10 /Re m  5.9M 

(Paredes et al, AIAA 2019)

* 1 L mm

A schematic diagram of the computational model and coordinate systems.

 5o 

 76.74T K 

3. Model and flow parameters
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4. Result - Base flow

2.54 R mm

5.08 R mm
15.24 R mm

Dashed black line: Entropy-layer edge

Solid black line: Boundary-layer edge
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2.54 R mm 0.57w adT T  *0.3 ( 50kHz)f  

• Pattern A (disturbance inside the entropy layer)

• Pattern B (disturbance inside the boundary layer) 
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Pattern 
A

Pattern 
B

Pattern A (hollow symbols)
Pattern B (solid symbols)
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4. Result - Character of optimal responses
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Character of optimal response-Pattern A (plane wave) 

2.54 R mm 0.57w adT T  

Contours of normalized (a) temperature and (b) 
streamwise velocity of optimal response for (0.45, 0)

Input 
forcings

Optimal response

Entropy-layer edge
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 Character of optimal responses-Pattern B (streaks)

2.54 R mm 0.57w adT T  
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Contours of normalized (a) temperature and (b) 
streamwise velocity of optimal response for streaks (0, 2)
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Optimal response

Boundary-layer edge

Entropy-layer edge
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Character of optimal responses-Pattern B (oblique wave)

2.54 R mm 0.57w adT T  

Contours of normalized (a) temperature and (b) 
streamwise velocity of optimal response for (0.3, 7)

Input 
forcings

Optimal response

Boundary-layer edge
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 Effect of  wall cooling

5.9     2.54 M R mm 
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• Adiabatic wall leads to the appearance of the first mode.

• The energy gain of the first mode (0.15, 1) is largest among all ω and β

• Generally, wall cooling would lead to a lower energy gain
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Adiabatic wall (solid line); Cold wall (dashed 
line)
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 Effect of  wall cooling (R = 2.54 mm)

T
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• Wall cooling has no effect on 

pattern-A disturbance 

u



0 0.2 0.4 0.6 0.8 10

0.2

0.4

Tw / Tad = 0.57
Tw / Tad = 0.75
Tad

(a)

x

N

0 50 100 150 200 2500

1

2

3

4

(0.3, 3)Tad

(0.3, 7)Tad

(0.3, 12)Tad

(0.3, 20)Tad

(0.3, 3)Tw / Tad = 0.75
(0.3, 7)Tw / Tad = 0.75
(0.3, 12)Tw / Tad = 0.75
(0.3, 20)Tw / Tad = 0.75
(0.3, 3)Tw / Tad = 0.57
(0.3, 7)Tw / Tad = 0.57
(0.3, 12)Tw / Tad = 0.57
(0.3, 20)Tw / Tad = 0.57

(c)

x

N

0 50 100 150 200 2500

1

2

3

4
(0.3, 0)Tad

(0.3, 1)Tad

(0.3, 0)Tw / Tad = 0.75
(0.3, 1)Tw / Tad = 0.75
(0.3, 0)Tw / Tad = 0.57
(0.3, 1)Tw / Tad = 0.57

(b)

x

N

0 50 100 150 200 2500

1

2

3

4

(0, 1)Tad

(0, 6)Tad

(0, 11)Tad

(0, 1)Tw / Tad=0.75
(0, 6)Tw / Tad=0.75
(0, 11)Tw / Tad=0.75
(0, 1)Tw / Tad=0.57
(0, 6)Tw / Tad=0.57
(0, 11)Tw / Tad=0.57

(a)

• Wall cooling would generally 

weaken pattern-B 

disturbance 

Pattern B Pattern A
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 Effect of bluntness

• Generally, the increment of bluntness would lead to a weaker 
modal and non-modal growth 

cold wall ( 0.57)w adT T  Adiabatic wall

2.54 R mm 5.08 R mm 15.24 R mm

4. Result
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4. Result - Orr/Lift-up mechanism 

( , ) (0.45, 1), 0.57w adT T      

 Vorticity components-Pattern A

u, T
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• Dominated by tilting in the shear direction (Extract 
energy from mean shear, Orr mechanism)

Streamwise

Wall-normal

Spanwise

• Temperature gradient inside the 
entropy layer is more evident than 

that of streamwise velocity
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 Orr/Lift-up mechanism 

• I indicators of Chu energy components and Enstrophy ratios
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• Evolution of enstrophy
ratios

of (0.3, 7) approaches (0, 2) 

• Wall cooling has no evident effect on vorticity 
transfer

• Weaker thermodynamic energy-destabilization 

effect of wall cooling on pattern B

(0.3, 3)-Pattern B (0.3, 3)-Pattern B
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 Competitive patterns

Optimal response 

Suboptimal response 
1

( , ) (0.6, 3)    

Optimal gain (solid line)  and suboptimal 
responses (dashed line)

Suboptimal response 
2

Suboptimal response 
3

Suboptimal response 
4

( , ) (0.6, 3)    

( , ) (0.6, 3)    

( , ) (0.6, 3)    

( , ) (0.6, 3)    

Pattern B

Pattern A

Pattern A

Pattern A

Pattern A

• A demonstration case



 ICCFD12

19

(Kennedy et al. AIAA 2019)

Similar structures

 Wind tunnel experiment over blunt cones 

(Schlieren images)
Elongated structures
(streaks, first mode)

 Wisp  Structures
(nonmodal disturbances)
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 Competitive patterns-A demonstration case for (0.6, 3)
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4. Result

• Vorticity transfer is more efficient for optimal disturbance, followed by the 

first, second, third and fourth sub-optimal response

Pattern A

Pattern B

Pattern B

Pattern A
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• Competitive patterns were identified by resolvent analysis

• Effect of wall cooling depends on specific patterns 

• No visible strengthening of modal or non-modal growth when 

increasing bluntness 

• Both Orr and Lift-up mechanisms may be involved in the 

transient growth  

5. Summary
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 Geometry of the leading edge (cylinder, ellipse…)

 Non-linear interaction between different growth patterns

 Transient growth near the nose

 Interaction between disturbance and the bow shock

6. Potential future works 
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THANKS!


