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Abstract: The attachment-line boundary layer is critical in hypersonic flows due to its signifi-
cant impact on heat transfer and aerodynamic performance. In this study, high-fidelity numeri-
cal simulations are conducted to uncover the complete processes of subcritical roughness-induced
laminar-turbulent transition at the leading-edge attachment-line boundary layer of a blunt swept
body under hypersonic experimental conditions. Two roughness elements of different heights are
examined. For the lower-height roughness element, additional unsteady perturbations are required
to trigger a transition in the wake, suggesting that the flow field behind the roughness element
acts as a disturbance amplifier for upstream perturbations. Conversely, a higher roughness element
can independently induce the transition. A low-frequency absolute instability is detected behind
the roughness, leading to the formation of streaks. The secondary instabilities of these streaks
are identified as the direct cause of the final transition. Finally, the characteristis of the result-
ing three-dimensional turbulent boundary layer are discussed. It is found that some advanced
law-of-the-walls, proposed based on statstical two dimensional boundary layer, are also applicable
to three-dimensional boundary layers under conditions involving crossflow and pressure gradients.
The analysis of Reynolds stress and turbulent kinetic energy budgets indicates that the funda-
mental features of the three-dimensional turbulent boundary layer are consistent with those of
two-dimensional cases.

Keywords: attachment line boundary layer, roughness-induced subcritical transition, three-
dimensional turbulent boundary layer,

1 Introduction
The subcritical transition of leading-edge boundary layer near the attachment line of swept wings plays
an important role in aerodynamic, which means the boundary layer may undergo transition to turbu-
lence below the critical Reynolds number predicted by linear stability theory(LST). This phonomenon is
especially critical because turbulent flow that starts at the leading edge of a swept wing can propagate
downstream, affecting extensive regions of the wing’s chord and compromising its overall aerodynamic
performance.

As the actual flow is three-dimensional in nature, to simplify the problem, it is common to employ
the swept Hiemenz boundary layer past a flat plate[1, 2] as an approximation model for the actual three-
dimensional boundary layer[3, 4, 5, 6] around the leading edge. Based on this model, the LST performed
by [4] gives a linear critical Reynolds number of Recrit ≈ 583.1, which is in good agreement with the
previous experimental finding [3] as well as the numerical simulation by Spalart [7]. However, in many
experimental tests[8, 3, 9], transitions are often observed at a significantly lower value Retr ≈ 250, if
the boundary layer is subject to sufficiently large external disturbulences. In order to understand the
discrepancy between linear stability results and experimental findings, finite amplitude perturbations
and nonlinear processes have to be taken into account. The group of Prof. Kleiser[10, 11, 12] carried
out direct numerical simulations on a swept Hiemenz boundary layer with a pair of stationary counter-
rotating streamwise vortex-like structures with finite amplitude. A bypass transition scenario has been
identified, which can explain the occurrence of subcritical transition in experiments. The initial pair of
stationary counter-rotating vortex-like structures lead to the transient growth of streaks according to
the lift-up effect, and then the damped primary vortices and streaks interacts with unsteady secondary
perturbations, causing secondary instabilities and leading to the final transition to turbulence.

However, the aforementioned conclusions are based on incompressible flow only. When compressible
effects (such as Mach number, shock waves, wall temperature, etc.) are taken into account, the problem
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becomes significantly more complex. Based on previous studies[13, 14, 15, 16, 17, 18], for large sweep
Mach numbers, the attachment-line mode is inviscid in nature, while for lower sweep Mach numbers,
the attachment-line instability exhibits the behaviours of viscous Tollmien–Schlichting waves. Detailed
reviews for these research have been included in our previous studies[16, 17] and the connection between
the linear stability features of the flow and the issues discussed in this study is not particularly direct.
Therefore, we will not elaborate on them here.

In fact, experimental investigations of high-speed attachment-line flow date back to 1959. Initially,
[19] focused on the effects of sweep angles and heat flux along the attachment line in supersonic conditions.
They detected the transition of attachment-line flow in their Mach 4.15 experiments, studying the effect of
sweep angles over a relatively wide range. Later, [20, 21] conducted experiments with a free-stream Mach
number of 3.5 and various sweep angles, also detecting transition along the attachment line and finding
transition Reynolds numbers around 650 (based on the boundary layer length scale at the leading edge).
[22] performed similar tests to validate Creel et al.’s results. [23] studied hypersonic attachment-line flow
in a Ludwieg-tube wind tunnel. In some conditions, the bypass scenario is the most possible reasons
for the transition. During the experiments, without the end plates and trip wires, the attachment-line
boundary layer can keep laminar along the entire attachment line.

Figure 1: Infrared measurements of the temperature distribution along the leading edge of the swept
blunt body. Dots indicate the positions of the pressure sensors; pink represents high-temperature regions,
while blue indicates low-temperature regions.

Recently, experimental tests are performed over a swept blunt leading edge, with a swept angle of
45o, in the FD-07 Mach 6.0 hypersonic wind tunnel of the China Academy of Aerospace Aerodynamics.
During the experiment, despite high levels of external perturbations, the attachment-line boundary layer
remained laminar. When pressure sensors are mounted at the attachment-line position on the leading
edge of a swept blunt body model, the surface of the model is no longer smooth. Due to unavoidable
installation errors during the experiment, effective roughness elements, such as small protrusions or
depressions, form along the attachment line. Experiments with this configuration have shown that
disturbances induced by these roughness elements can effectively trigger the transition of the attachment-
line boundary layer to turbulence, as shown in figure 1.

Previous studies indicate that the phenomenon of subcritical transition is highly significant in the
context of attachment-line flows. However, most of these studies have been limited to incompressible flows
or confined to linear analysis, leaving a significant gap in the understanding of subcritical compressible
flows. Furthermore, even in incompressible flow scenarios, existing computational analyses have often
employed simplified models or introduced artificial disturbances to facilitate numerical studies, raising
questions about their validity under actual conditions. Therefore, it is imperative to conduct numerical
investigations of the three-dimensional boundary layer at the leading edge of compressible blunt bodies
under relative realistic conditions. In this study, we perform numerical simulations of transitional high-
speed attachment-line boundary layers that develop from finite amplitude initial disturbances. These
simulations correspond to experimental investigations of roughness-induced transition over a real blunt
configuration, without assuming an infinite span. Unlike typical transitional studies, we have calculated
the complete transition to turbulence over a real configuration. Our primary aim is to investigate
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the physical mechanisms of transition induced by roughness elements in three-dimensional attachment-
line boundary layers at the leading edge. Additionally, we focus on the characteristics of turbulence,
particularly the variations in mean flow properties and fundamental statistical quantities.

This paper is organized as follows. In section 2, the governing equations are introduced as well as the
details for numerical simulations. The results for transitional and turbulent three-dimensional boundary
layers are presented in section 3 and the conclusions and some discussions are given in section 4.

2 Methodology

2.1 Governing equations
The governing equations for all simulations in this work are the dimensionless compressible Navier–Stokes(NS)
equations for a Newtonian fluid, which can be written as:

∂Q

∂t
+
∂Fj
∂xj

+
∂F vj
∂xj

= 0, (1)

Q = [ρ, ρu1, ρu2, ρu3, Et]
T
, (2)

Fj =


ρuj

ρu1uj + pδ1j
ρu2uj + pδ2j
ρu3uj + pδ3j
(Et + p)uj

 , F vj =


0
τ1j
τ2j
τ3j

τjkuk − qj

 . (3)

Throughout this work the coordinates xi, (i = 1, 2, 3) are referred to as x, y, z, respectively, with corre-
sponding velocity components u1 = u, u2 = v, u3 = w. Fj and F vj stand for the inviscid and viscous flux.
The total energy Et and the viscous stress τij are given as, respectively,

Et = ρ

(
T

γ(γ − 1)M2
∞

+
ukuk

2

)
,

τij =
µ

Re∞

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
.

(4)

The pressure p and heat flux qi are obtained from:

p =
ρT

γM2
∞
, qi = − µ

(γ − 1)M2
∞Re∞Pr

∂T

∂xi
. (5)

The viscosity is calculated using the Sutherland law

µ = T 3/2 T∞ + C

T · T∞ + C
, (6)

with C = 110.4K. The free-stream Reynolds number Re∞, Mach number M∞ and Prandtl number Pr
are defined as

Re∞ =
ρ∗∞U

∗
∞l
∗
0

µ∗∞
, M∞ =

U∗∞√
γR∗gT

∗
∞
, P r = 0.72, (7)

where ρ∗∞, U∗∞, T ∗∞ and µ∗∞ stand for the freestream density, velocity, temperature and viscosity, respec-
tively. R∗g = 287J/(K · Kg) represents the gas constant and γ stands for the ratio of specific heat. The
length scale l∗0 is chosen as 1 millimeter in this research. The ∗ denotes dimensional flow parameters.

2.2 Numerical method
Two solvers have been employed in this study. The first code we use to perform computations is the high-
order finite difference code developed recently at Tsinghua University. A shock-fitting (S-F) method [24]
is used to compute steady hypersonic viscous flow together with the high-order accurate non-compact
centre finite differences methods. The fifth-order upwind scheme (for inviscid flux Fj) and the 6th-
order centre scheme (for viscous flux Fvj) are used to compute the flow field. A 4th-order Runge-Kutta
method is applied for the time integration, and the simulations are performed until the maximum residual
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reaches a small value on the order of 10−15. A full implicit scheme can also be used for fast convergence.
Validations of the code and some applications for calorically perfect gas and thermal-chemical non-
equilibrium flow can be found in our previous study[16, 17, 25]. The solver is used mainly to determing
the location of the leading shock and give a high quality initial field.

The second code, used in this study, is a well-validated fluid dynamic shock capture (S-C) solver
OPENCFD, developed by Li et al[26], which is mainly used to simulate the whole transition/turbulent
processes. The code has been validated and verified in previous studies[26, 27, 28]. For three-dimensional
calculations presented in this study, a hybrid high-order finite difference scheme, including the seventh-
order upwind scheme, fifth-order and seventh-order WENO schemes[29], together with a shock sensor[30]
is used for the inviscid flux in the characteristic form. Based on that formular, during the calculation,
more than 98% of the regions use the linear seventh-order upwind scheme, only a few regions correspond-
ing to discontinuities use the nonlinear WENO schemes, which greatly increase the calculation efficiency.
A standard sixth-order central difference scheme is used for viscous flux.

2.3 Models
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L4 = 20

Figure 2: Schematics of the swept blunt leading edge used for numerical simulations.

The computational model comes from recent experimental tests in the FD-07 Mach 6.0 hypersonic
wind tunnel of the China Academy of Aerospace Aerodynamics. The experimental model is the front
part of a delta wing with a swept angle Λ of 45 degrees. The thickness of the wing is 2L4 = 40mm. The
spanwise length along the attachment line is 425mm. An asymptotic state can be reached at around half
the position of the model. The front part of the wing is polished and can be seen as a plate. In this
study, we have established a coordinate system, as in figure 2 wherein the z-axis aligns with the leading
edge of the swept blunt model, coinciding with the attachment line and extending in the corresponding
spanwise direction. The normal direction on the corresponding attachment line and swept blunt body is
defined as the y-axis. Finally, the x-axis is defined to complete the typical Cartesian coordinate system
in conjunction with these two axes. As usual, a body fitted coordinate (ξ, η, z) is also established with
the same spanwise direction as the Cartesian coordinate system, while the ξ-axis is defined along the
chordwise direction and the η-axis is defined along the surface normal directions.

Based on that geometry, a computational model is designed as in figure 2. The computational model
can be likened to a sandwich-like configuration, where the top and bottom layers consist of semicircles
with a radius of R1 = 17.5mm, and the intermediate layer is a flat plate with a width of 5mm. Together,
these three layers form the complete swept blunt body configuration. The roughness elements is located
at z = L2 = 40mm, at the center of the leading plate. The radius of the roughness is R2 = 2mm. The
length of the whole model is designed as L1 = 200mm. Based on experiments, the surface temperature
is set to T ∗w = 370K , other relative flow parameters are listed in table 1.

As previous analysis around the attachment-line boundary layers, we define the sweep Mach number
Ms and the sweep Reynolds number Res as

Res =
w∗∞δ

∗
r

ν∗r
≈ 714,Ms =

w∗∞
c∗s
≈ 2 (8)
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Flow conditions M∞ Re∞ T ∗∞ T ∗w Λ γ
6.0 1.8× 104 56.58K 370K 45o 1.4

Parameters for roughness elements Sr kh kh/δ
∗
bl d Rekk Nk

case H0100 1.0 0.1mm ≈ 0.5 4mm ≈ 678 ≈ 87
case H0200 1.0 0.2mm ≈ 1 4mm ≈ 2776 ≈ 125

Table 1: Basic parameters for flow and roughness at basic grid. Nk is the number of wall normal points
for 0 6 y 6 kh. δ∗bl = 0.2mm is the thickness of the laminar boundary layer at the attachment-line
boundary layer.

based on the length scale δ∗al =
√
ν∗r∂u

∗
e/∂x

∗ at exact attachment line x∗ = 0 and the variables outside
of the attachment-line boundary layer. c∗s is the sound speed after the leading shock, ν∗r stands for
the kinematic viscosity at recovery temperature T ∗r ≈ 433K and the temperature at the edge of the
leading attachment-line boundary layer is T ∗at,e ≈ 260K. The value ∂u∗e/∂x∗ at exact attachment line
x∗ = 0 is not known a priori for the present case, the potential flow around a circular cylinder with
equivalent radius L4 is thus used to evaluate the derivative. By using the linear stability theory over
two dimensional domains, the neutral surface of the most dangerous discrete mode are presented in
figure 3 over a Res − Ms − β coordinate. Detailed settings and calculations can be found in many
previous studies[13, 31, 16]. Here, β is the normal spanwise wave numbers. The red line in figure 3
indicates the case we focus on in this study. It is found that the critical Reynolds number increases
with increasing sweep Mach number, which indicates that the leading viscous mode (Görtler-Hämmerlin
mode) is supressed by the compressible effects. Also, it is clearly shown that the present case (the red
line) is locate at the stable or subcritical region, which means that the transition to turbulence at the
present case is not triggered by a linear instability.

Unstable

Stable

Figure 3: The neutral surface of the most dangerous discrete temporal mode over the Res −Ms − β
plane. The growth rate space is divided into stable and unstable regions by the neutral surface.

2.4 Roughness elements
The roughness element, shown in figure 4, designed to simulate a pressure sensor with a circular disk
configuration during the experiment, is characterized by the function expressed in polar coordinates
(r, φ), with the shape of the shoulders being defined by a hyperbolic tangent function in similar ways as
in previous studies[32, 33]. The function is defined as

h(r, φ) =
kh
2

+
kh
2

tanh

[
Sr
kh

(
d

2
− r
)]

, (9)
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(a) (b)

x

y

z

y

Figure 4: (a) The grid distributions arount the roughness with the roughness height kh = 0.1mm in full
resolution. (b) The shape of roughness in two cross sections

with kh and d being the height and diameter of the roughness. The slope factor Sr is set to 1.0 for all
cases in the present study. In general, the center of the roughness is locate at the points (xc, zc) = (0, 40),
the diameter is d = 4.

Another important parameter for roughness induced transition is the Roughness reynolds number
Rekk, characterised based on the height (kh) and the velocity (w) in the undisturbed laminar flow with
respect to the position of the roughness. This roughness reynolds number is defined as a function of

Rekk =
ρ(kh)w(kh)kh

µ(kh)
, (10)

and listed in table 1 based on the laminar boundary layer.

2.5 Simulation strategy

2D Calculation 3D Calculation
S-F Solver S-C Solver

 Periodic BC Inlet BC

Outlet BC

Shock Surface

Swept blunt body

Roughness elements

Free-stream BC

(a) step 1 (b) step 2 (c) step 3

Figure 5: The outline of calculation processes. S-F: Shock Fitting, S-C: Shock Capture

The calculation process for this kind of problem is divided into three steps, with two kinds of com-
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pressible solvers[26, 17] as shown in figure 5. Assuming the incoming flow has reached an asymptotic
state, a two-dimensional calculation with infinity span assumption (∂/∂z = 0) is performed first using a
shock-fitting solver. With the exact location of the shock revealed, alignment and clustering of the mesh
along the bow shockwave can be easily achieved for the following shock-capture calculation. To diminish
the numerical perturbations between the two solvers, a three-dimensional domain is further designed for
pre-calculation with a periodic boundary condition along the spanwise direction, with the newly built
grid and the initial field from the fitting solver. When the calculation is converged, the solution from the
middle slice of the periodic three-dimensional domain is used for the fully three-dimensional calculation.
As the boundary layer develops along the attachment line and the chordwise direction, non-reflection
outlet boundary conditions are used further downstream along the attachment line and the chordwise
direction. Away from the surface, as the shock is embeded in the computational domain, freestream
boundary conditions are used at the outside.

To closely mimic the conditions observed during experimental tests, the generation of unsteady per-
turbations is implemented in two distinct phases. In the first phase, random velocity perturbations, with
maximum amplitude constituting approximately 2% of the free-stream velocity, are introduced upstream
of the leading shock waves. This procedure aims to replicate the perturbations measured in wind tunnel
experiments. In the second phase, to simulate the disturbances inherent to upstream boundary layers
along the attachment line, random wall normal blowing and suction are executed via a hole on the wall.
These disturbances, too, possess an maximum amplitude of roughly 2% of the free-stream velocity. The
specified hole is positioned at coordinates (zc, xc) = (30, 0) and defined with a radius of 2.

In the computational analyses conducted within the scope of this study, two distinct cases were exam-
ined. In the first scenario, characterized by a roughness element height of 0.1mm, unsteady perturbations
were deliberately introduced to facilitate the onset of transition. Otherwise, the transition would not
occur within the wake flow induced by the roughness elements. Conversely, the scenario involving a
roughness element height of 0.2mm presented a fundamentally different dynamic. The inherent absolute
instability associated with this configuration led to a spontaneous disruption of flow symmetry. This
natural progression towards asymmetry effectively initiates the transition process, obviating the need for
the introduction of external perturbations.

To facilitate the analysis investigating the mean field characteristics, both Reynolds-averaged and
Favre-averaged mean quantities are employed, following the approach of Huang et.al [34]. The Reynolds-
averaged mean of an arbitrary variable f is denoted by f , while the Favre-averaged mean is denoted
by f̃ = ρf/ρ. In addition, the fluctuations around the Reynolds and Favre averages are represented
by single and double primes, respectively. That is, f ′ = f − f and f ′′ = f − f̃ . Given the absence
of homogeneous directions in the configurations under consideration, achieving ideally averaged states
necessitates a considerable amount of time.

The statistical analysis of the flows was conducted over a span of 1800 time units, encompassing
approximately 900,000 steps. This duration is roughly ninefold the time required for a flow to evolve
from the inlet to the spanwise flow outlet. To ascertain the independence of flow statistics from the
duration of statistical analysis, we performed an additional test. This test involved comparing flow
statistics derived from two distinct averaging intervals, with one interval containing 50% more statistical
steps than the other, to ensure that any discrepancies of the flow statistics for major variables between
the two intervals were small enough, not exceeding 0.1%.

3 Results

3.1 General features of the flow fields
The general features of the whole flow fields are shown in figure 6 and figure 7, with the iso-surfaces of
λ2 = −0.035 transient fields and iso-surfaces are colored with spanwise velocity w. The whole flow fields
can be divided into three parts. The first part is the roughness region, in which the initial laminar flow
is perturbed by the surface deformation. Typical vortex structures are formed behind the roughness,
which can be seen as streaks. The secondary instabilities of streaks and the breakdowns, lead to typical
turbulent structures, along the attachment line, and small vortexes structures are shown. The second
part is the transitional region, in which the initial turbulences at the attachment line develop along the
spanwise direction as well as the chordwise direction. At the very beginning, the turbulences are located
around the attachment line and the turbulent region expands along the chordwise direction slightly.
Then, as the flows develop further downstream, the turbulent structures are flushed from attachment-
line region to chordwise outlet. The final part is the fully turbulent region, where the fully developed
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Figure 6: Instantaneous iso-surface of λ2 = −0.035, colour indicates w, for the first part of case H0100.

Figure 7: Instantaneous iso-surface of λ2 = −0.035, colour indicates w, for the second part of case H0100.

Figure 8: Instantaneous iso-surface of λ2 = −0.035, colour indicates w, for the case H0200.

8
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turbulences cover the whole region of the leading-blunt body, ranging from attachment line to chordwise
outflow.

When the height of the roughness element is increased from 0.1 to 0.2, there are significant differences
in the vortex structures formed behind the roughness, as shown in figure 6 and 8. These differences can
be seen more directly in the contours of surface average heat fluxes θtw and skin frictions τw, as depicted
in figures 9 and 10. These metrics essentially serve as "footprints" of the boundary layer dynamics,
providing insights into the complex interactions and flow structures present within the boundary layers.
Here, as the usual boundary layers in previously, we define the velocity u+, based on inner scale as

h+ =
ρwuτh

µw
, u+ =

|up|
uτ

, |up| =
√
u2ξ + w2,

uτ =

√
τw
ρw
, τw =

µ

Re

∂up
∂h

∣∣∣∣
h=0

,

 , (11)

where, up is the velocity parallel to the surface. The skin-friction coefficient Cf and surface heat-flux
θtw for this kind of flow are defined as

Cf =
2µ∗w
ρ∗∞U

∗2
∞

=
2µw
Re

∂up
∂h

= 2τw, θtw = −
∣∣κ∇T · n∣∣ . (12)

The derivatives of surface normals, denoted as ∂/∂h, for arbitrary variables fψ, are determined through
a two-step process. Initially, the gradients of the variables fψ are computed utilizing the identical scheme
adopted for the calculation of viscous fluxes during the simulations. Subsequently, the derivatives of the
surface normals ∂fψ/∂h are obtained by projecting the calculated gradients ∇fψ onto the surface normal
vectors n.

(a) (b)

Figure 9: The surface heat fluxes distributions for two cases. (a) for H0100, (b) for H0200.

(a) (b)

Figure 10: The surface skin friction distributions for two cases. (a) for H0100, (b) for H0200.

The magnitude contour of average density gradients for case H0200, at the attachment-line plane, is
depicted in figure 11. This illustration provides a comprehensive view of the general flow field character-
istics for both cases. The presence of surface roughness induces a shock slightly ahead of the roughness.
As this shock evolves away from the surface and progresses downstream, it shapes into a curved shock
surface under the influence of the incoming flow. The interaction of this induced shock with the leading
shock of the blunt body, followed by its reflection back into the boundary layer downstream, results in
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a noticeable deformation of the leading shock. Subsequent to the roughness-induced shock, the com-
pressed fluids undergo expansion and acceleration, leading to the formation of a recompression shock at
the roughness’s tail along the z−direction. Meanwhile, a shear layer develops behind the roughness, and
the recompression shock once again impinges on the leading shock, reflecting back into the boundary
layers. When the flow evolves further downstream, the high-shear region at the outside of the boundary
layer becomes much weak, as reflected as the decrease of magnitudes for the density gradient |∇ρ|.

Figure 11: Density gradient magnitude contours of the case H0200, at attachment-line plane x = 0. The
red line stands for the computational domain.

The figure 12 and 13 show the distributions of mean velocity and temperature along the attachment
line in the wall-normal direction. Additionally, the size and specific location of the corresponding sepa-
ration bubbles are indicated by blue lines in the figures. It is evident from the figure that the separation
bubbles induced by small roughness elements are lower in height compared to those induced by large
roughness elements, but extend farther downstream. Conversely, the separation bubbles induced by
larger roughness elements extend farther upstream. The corresponding velocity and temperature profiles
highlight the approximate location of the shear layer and illustrate the process through which low-speed
fluid, due to the lift-up effect, is elevated away from the wall.
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Figure 12: Line plots of average spanwise velocity w around the roughness for (a) H0100 and (b) H0200
cases. The red and blue lines stand for the wall surfaces and seperation bubbles, respectively.

3.2 Mechanisms of the roughness induced transition
In this section, we try to understand the transition mechanisms of these flows by using long time one-point
spectra statistics. At the beginning, all sampled points are located at the attachment-line plane(x = 0).
Figure 14 and 15 show the instantaneous flow fields at the exact attachment-line plane for the two
cases, together with the statistical results of the selected points. The regions of the revease flow near
the roughness are pointed by the white lines. As mentioned previous, the two distinct cases deliver
two different dynamics with respect to the transition processes. In the first scenario, case H0100, the
transition would not occur within the wake flow induced by the roughness elements, without the unsteady
perturbations, even though the roughness Reynolds number Rekk or the height of the roughness kh are
beyound the critical values in normal plate boundary layers[35, 36, 37]. Contrariwise, as the height of
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Figure 13: Line plots of average Temperature (T − Tw)/(T∞ − Tw) at the attachment line around the
roughness for (a) H0100 and (b) H0200 cases. The red and blue lines stand for the wall surfaces and
seperation bubbles, respectively.

roughness element increases to 0.2, the transition will occur without employing forcing of any kind, which
suggest a self-sustaining mechanism that causes the flow to transition.
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Figure 14: (a) The instantaneous density contour at the attachment-line plane x = 0 for case H0100. (b)
The temporal evolutions of instantaneous chordwise velocity perturbations u′ of the selected points. (c)
The amplitudes for different Fourier modes |F (u′)| for different frequency at the selected points.

This is also reflected in the corresponding measurement point signals of u′. In H0100 case, we intro-
duced random perturbations, resulting in the signal detected at point P1 exhibiting typical broadband
characteristics, with energy distributed relatively uniformly across a range of frequencies. Additionally,
there is a slight increase in perturbation amplitude at the frequency around 70 KHz. As the flow con-
tinues to develop downstream from P2 to P5, the perturbations gradually increase, and disturbances
around the frequency around 70 KHz become the dominant perturbations. This leads to the frequency
amplitude distribution characteristics evolving towards typical turbulent features.

When the height of the roughness element increases to 0.2 mm, prominent instability waves are ob-
served at points P1, P2 and P3. The figures indicate that the disturbances, which are amplified as they
travel downstream from P1 to P3, not only grow in a convective manner but also exhibit characteris-
tics of absolute instability, as they are amplified over time at fixed locations. Based on the results of
the discrete Fourier transformation, the frequency of the most representative perturbations is around
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Figure 15: (a) The instantaneous density contour at the attachment-line plane x = 0 for case H0200. (b)
The temporal evolutions of instantaneous chordwise velocity perturbations u′ of the selected points. (c)
The amplitudes for different Fourier modes |F (u′)| for different frequency at the selected points.

10 KHz, referred to as low-frequency perturbations in this study. As these perturbations evolve down-
stream, some high-frequency components are gradually amplified. This amplification is evidenced by the
increasing amplitude of disturbances in the region beyond 400 KHz. Simultaneously, the low-frequency
perturbations appear to reach a saturation state as they evolve downstream, with their amplitude show-
ing minimal growth. This is evidenced by the nearly constant amplitude of low-frequency disturbances
from points P2 to P4 in the figures. As the flow continues to develop further downstream to point P5,
the overall disturbance spectrum exhibits typical broadband characteristics which indicates that the flow
are stepping into full turbulent.

To better understand the mechanisms and identify possible nonlinear coupling features during the
transition processes, higher-order spectral (HOS) analysis is employed. Specifically, bispectral analysis
is utilized here to examine nonlinear signals. This method enables the detection and quantification of
possible nonlinear interactions between different frequency components of the signals. The bispectrum
B(ω1, ω2) for a signal f(t) is defined as

B(ω1, ω2) = E [F (ω1)F (ω2)F c(ω1 + ω2)] , (13)

where F (ω) is the Fourier transform of the temporal signal f(t) and ω is the frequency. E[.] stands for
an expected value. The superscript c represents the complex conjugate.

The bispectrum of selected points in figure 14 and 15 are shown in figure 16 and 17, respectively. For
both cases, the most representative interactions between two waves with different frequencies are shown.
Based on the definition of bispectrum (13), it measures the nonlinear interactions between frequencies
ω1 and ω2, as well as their sum ω1 + ω2. For a purely linear signal, the bispectrum theoretically should
be zero or very close to zero. For general nonlinear signal, the diagonal elements (if ω1 = ω2 = ω0) of
the bispectrum reflect the interactions between a frequency ω0 with itself and its double frequency 2ω0.
Significant values along the diagonal often indicate the presence of harmonic components in the signal.
The off-diagonal elements (if ω1 6= ω2) illustrate the nonlinear interactions between distinct frequencies
ω1 and ω2, and their sum frequency ω1 + ω2. The obvious values off the diagonal suggest the nonlinear
coupled phenomena between different frequency components.

The basic behaviour of the perturbations, shown in figure 16 and 17, are the same as described
before. For the H0100 case, the results indicate that regions with larger magnitudes of low-frequency
disturbances are primarily located on or near the diagonal. This suggests that in this condition, the ex-
citation of higher-order harmonics plays a significant role in the nonlinear evolution of the corresponding
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Figure 16: The normalized bispectrum |B| of the perturbations u′ at the points P1 to P5 for the H0100
case. Panels (a) to (d) correspond to points P1 to P5, respectively.
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Figure 17: The normalized bispectrum |B| of the perturbations u′ at the points P1 to P5 for the H0200
case. Panels (a) to (d) correspond to points P1 to P5, respectively. Note that certain features have been
magnified for enhanced readability and clarity.
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Figure 18: The selected points for two cases. (a) for H0100, (b) for H0200. The corresponding points are
sequentially recorded as s1, s2, · · · , s32 along the z-axis from upstream to downstream, starting from the
attachment line to chordwise downstream. The subscripts h1 and h2 are used to distinguish the points
in different cases.

disturbances. As the disturbances propagate downstream, the spectral distribution of disturbances at
points P2 through P4 appears to remain relatively unchanged. This indicates that the composition of the
disturbances remains nearly constant, suggesting that the disturbances have grown to a certain extent
and have reached a nearly saturation stage.

For the H0200 case, the bispectrum exhibits characteristics that are markedly different from the pre-
vious condition. At the first three signal recording points (P1, P2, and P3), the dominant disturbances
in the overall disturbance spectrum appear only in the low-frequency region, consistent with the results
from the previous power spectrum analysis. As the disturbances further develop to point P4, some
high-frequency disturbances begin to emerge, roughly within the [400KHz, 800KHz] range. These high-
frequency disturbances exhibit significant nonlinear interactions with the low-frequency disturbances as
well as the zero-frequency disturbances, with the frequencies of the low-frequency disturbances remaining
consistent with those recorded at the previous three points. This suggests that the low-frequency distur-
bances have evolved sufficiently, and the detected high-frequency disturbances correspond to a secondary
instability arising in the already saturated low-frequency disturbances combined with the mean field.

To provide a more comprehensive understanding of the disturbance evolution process during transi-
tion, we shift our focus slightly away from the wake of roughness elements at the attachment-line region
to analyze the characteristics of disturbance evolution around the entire roughness element, including the
upstream and horseshoe vortex regions. In order to trace the evolution characteristics of disturbances in
the three-dimensional flow field, we select and record the fluctuating density on the three-dimensional
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Figure 19: The spectra Eρ of perturbations density ρ at the selected points in figure 18. (a) and (b)
stand for the two groups of selected points in H0100 case. (c− e) represent the three groups of selected
points in H0200 case. From light to dark blue dashed lines, the spectra represent points from spanwise
upstream to downstream.
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surfaces around the roughness element for analysis. The selected points for H0100 and H0200 cases are
shown in figure 18 together with the surface skin friction. The selected points can roughly be divided
into three groups. The first group is located along the exact attachment line, extending from upstream
to downstream of the roughness element, labeled sequentially as s1, s2, · · · , s14. The second group is
located on the side of the roughness element, also extending from upstream to downstream, labeled as
s15, s16, · · · , s24. The third group, labeled as s25, s26, · · · , s32, is also on the side of the roughness element
but is further from the second group of detection points. The first two groups are the same for both
cases, while the third group appears only in the H0200 case to track the evolution of the corresponding
horseshoe vortex.

The spectra of those points are shown in figure 19. In the scenarios of lower height roughness element,
the incoming flow ahead of the roughness is subjected to the additional perturbations. Based on the
spectra(the red lines in figure 19(a) and (b)), no dominant frequency could be observed. As the flow
gradually approaches the roughness element, the overall amplitude of disturbances increases progres-
sively (as indicated by the red dashed line in Figure 19(a)). After the fluid passes over the roughness
element, the disturbances are somewhat suppressed due to the adverse pressure gradient resulting from
the expansion effects of the high-pressure region induced by the shock wave. This suppression leads to
a decrease in the amplitude of the disturbances (as indicated by the black dashed line in Figure 19(a)).
However, once the flow moves past the roughness element, the disturbances exhibit a marked tendency to
increase again. It is important to note that the frequency range of disturbances that first starts to grow
significantly is approximately 100 KHz, which is consistent with previous analyses. As for the vortex
structures formed on both sides of the roughness element, they also exhibit similar patterns of change
(as indicated in Figure 19(b)). However, the corresponding amplitudes have not grown significantly large
(i.e., a distinct plateau region appears in the mid-to-low frequency range), which correlates with the
previous observation that no significant transition phenomena were observed on both sides.

In scenarios involving a higher roughness element, different phenomena are observed (as shown in
Figures 19(c−e)). Due to the absence of additionally introduced artificial disturbances under this condi-
tion, the amplitude of disturbances upstream of the roughness element is relatively low, especially in the
mid-to-high frequency range. As the disturbances approach the roughness element, the amplitude of low-
frequency components is generally amplified. Additionally, within the separation bubbles both upstream
and downstream of the roughness element, some peaks appear in the high-frequency range (indicated by
the red dashed line and black dashed line, where the red dashed line represents the upstream separation
bubble and the black dashed line represents the downstream separation bubble), reflecting the high-
frequency characteristics of the separation bubbles. Similar to the lower roughness element, disturbances
exhibit a certain degree of suppression after passing over the roughness element (the amplitude corre-
sponding to the black dashed line is relatively low). As the flow further moves downstream, disturbances
in the high-frequency range gradually increase, resulting in some peaks (these peaks correspond to the
high-frequency range identified in previous analyses), eventually leading to fully developed disturbances
and the transition to turbulent flow. On the side stimulated by the horseshoe vortex generated by the
higher roughness element, similar characteristics are observed, as shown in Figure 19(e). As indicated
by the previous analysis of wall heat flux and skin friction, there exists a relatively ’quiet’ zone between
the two transition peaks (as shown in Figure 19(d)). The corresponding disturbance amplitude in this
region is smaller compared to the regions on either side. The disturbances in this zone only begin to
grow once the disturbances on both sides have fully developed.

3.3 Mode decompositions of the transitional flow fields
In this section, we aim to understand the transition mechanisms of these flows using two- and three-
dimensional mode decompositions. Given the extensive computational grid involved, documenting every
instantaneous signal throughout the entire flow domain is virtually impossible. Therefore, to analyze
specific flow characteristics, we strategically focused on capturing variable signals within targeted regions
to reveal the featured flow structures. Even though regarding the analysis of three-dimensional flow
fields, it is important to acknowledge that the significant disk storage requirements for time-sequential
data make it impractical to achieve the same level of precision across a broad frequency range as that
obtained from one-point statistics analysis. Therefore, we intend to primarily utilize modal decomposition
analysis to investigate the potential occurrence of high-frequency disturbances and the three-dimensional
structural characteristics of secondary instabilities. The sub-block regions shown in figure ?? are used
to record the instantaneous signal of basic variables. The resolutions (Nsξ ×Nsη ×Nsζ) of the blocks
for case H0100 and H0200 are 201× 301× 801 and 401× 301× 701, respectively. Additionally, 600 time
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samples are recorded at a time step of ∆t = 0.1, covering a total of 60 basic time units.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

500

1000

1500

2000

2500

3000

0.9 0.95 1 1.05 1.1
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

DMD 1

DMD 2

DMD 3

DMD 4

(a)

(b)

Figure 20: The spectrum and selected modes of DMD for H0100 case in three-dimensional region. The
λ2 is used as observation variable. (a) shows the spectrum. (b) shows the frquency =(log(µ)/∆t) and
amplitude |α|.
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Figure 21: Spatial structures of the selected DMD modes with iso-surfaces of λ2 = −5 × 10−5, for case
H0100.

In approximating the Koopman eigenfunctions of continuous systems associated with nonlinear NS
equations through dynamic modes, selecting appropriate variables becomes crucial for generating signif-
icant spatio-temporal patterns. Koopman theory suggests that good observables might better capture
the dynamics of nonlinear systems. Consequently, this study employs the λ2, a variable derived from
vortex identification, serving as a dynamic indicator for structures. The decomposition’s fundamental
parameters are detailed in Table 2. Due to the prohibitive size of the input datasets, necessitating dis-
tributed memory high-performance computing, this work adopts and adapts a parallelized algorithm, as
described by Sayadi & Schmid [38], to facilitate DMD.

The DMD results for case H0100 are shown in figure 20 and 21. The most important modes are
shown in the spectrum. Excluding the associated mean flow mode, the selected dominant modes all ex-
hibit distinct streak characteristics. The corresponding disturbance structures are primarily distributed
downstream of the roughness elements, highlighting the feature that in the later stages of transition

17



 ICCFD12

Case Observations Nsξ Nsη Nsζ Dof No. (snapshots) Memory (Tb)
H0100 λ2 201 301 801 0.48× 108 600 0.22

H0200 λ2 401 301 701 0.85× 108 600 0.4

Table 2: Basic parameters of domains and the observations used for the decomposition. Degree of free-
dom(Dof) stands for the variables numbers per snapshots. Memory represents the memory requirements
for storing all input data.

and in turbulent states, higher-frequency disturbances gradually become more prominent. Additionally,
the decomposed Modes 1, 2, and 3 all display significant disturbance characteristics near the roughness
elements. This indicates that the transition is not simply and spontaneously occurring at a certain down-
stream distance from the roughness elements, but is instead connected with the upstream disturbances
near the roughness elements.
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Figure 22: The spectrum and selected modes of DMD for H0200 case in three-dimensional region. The
λ2 is used as observation variable. (a) show the spectrum. (b) shows the frquency =(log(µ)/∆t) and
amplitude |α|.

The results of case H0200 are presented in figure 22 and 23, which exhibit distinct differences compared
to case H0100. The Mode 1 exhibits typical streak structures, however, unlike previous conditions, in
addition to the streaks at the central position (around x = 0), there are also streak regions on either side.
These lateral regions correspond to the vortex structures formed at the edges of the larger roughness
elements, continuing their downstream development. Modes 2, 3, and 4 reflect the flow structures known
as hairpin vortices in the typical transitional boundary layer induced by roughness elements. These
structures represent the intense momentum mixing processes occurring during transition. These modes
clearly illustrate that at certain distances from the stagnation line, the flow streaks evolving from the
upstream horseshoe vortex enter a strong nonlinear phase earlier than those along the centerline, forming
corresponding vortex structures.

3.4 The features of three-dimensional turbulent boundary layers
In this section, boundary-layer profiles are extracted at several locations from the present simulations for
H0200 case, and the local turbulence statistics are shown to give a relative complete and comprehensive
understanding of the turbulent features in the present three-dimensional configurations.

Prior to addressing the issues of turbulence, it is crucial to ensure that the flow has reached a fully
developed turbulent state. Therefore, we perform spectral analysis on the fluctuation data obtained
from points selected along the attachment-line plane. The procedure for computation of the frequency
spectrum follows the method discussed by Choi & Moin[39]. The 60000 time snapshots with time
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Figure 23: Spatial structures of the selected DMD modes with iso-surfaces of λ2 = −5 × 10−5, for case
H0200.

step ∆t = 0.01 are divided into overlapping segments, each containing 5000 sample points. Figure 24
shows the frequency spectrum Eu of the velocity fluctuations u′ at several spanwise locations along the
attachment line. From the figure, it can be observed that the spectra of fluctuations at different positions
nearly overlap, indicating that the fluctuations at these two positions have very similar characteristics.
The spectra also reflect typical scaling laws consistent with turbulence statistics, such as the well-known
-5/3 slope. However, it should be noted that the Reynolds number of the turbulent boundary layer in
this study is not high, resulting in a limited inertial subrange in the spectrum. At higher wavenumbers,
the dissipation spectrum aligns well with Heisenberg’s -7 scaling[40]. All these ensure that the flow has
reached a state of fully developed turbulence.
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Figure 24: The frequency spectrum of the perturbations u′ at several spanwise locations along the
attachment line. The two dashed red lines stands for the lines Eu ∼ −5/3 and −7.

The transformed mean velocity profiles are shown in figure 25. (a)−(i) represents the locations along
chordwise directions, range from the exact attachment line to downstream chordwise direction. The
transformed mean velocity profiles w+

V D, w
+
TL, w

+
V and w+

ts are shown to assess the ability in collapsing
mean velocity profiles in compressible three-dimensional boundary layers on the incompressible law-of-
the-wall. Firstly, we look at the profiles at the exact attachment line(Figure 25(a)). Excluding the
Trettel & Larsson transformation, the other three transformations yielded satisfactory results. There
were two unexpected findings: First, based on previous research, the Trettel & Larsson transformation
is expected to perform well in fully developed, non-spatially varying boundary layers; however, in the
conditions investigated in this study, it inaccurately predicted the logarithmic region. Second, it is well-
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Figure 25: Mean velocity profiles of spanwise velocity w along the the wall normal direction at selected
locations along the surface. (a) − (i) stands for the locations range from the exact attachment line to
downstream chordwise direction.

known that the Van Driest transformation generally performs poorly in compressible, heat-exchanging
flat-plate turbulent boundary layer flows. Nevertheless, under the conditions of this study, the Van Driest
transformation produced acceptable results.

As the position gradually moves away from the attachment line to the point of maximum transverse
pressure gradient (Figure 25(f) and (g)), different velocity transformations continue to exhibit similar
patterns to those observed at the attachment line. This indicates that in the present fully developed
three-dimensional turbulent compressible boundary layer, even in the presence of transverse pressure
gradients and transverse velocity components, the mainstream velocity component still largely conforms
to the velocity transformations previously established for flat-plate boundary layers.

The temperature profiles also play a vital role in compressible boundary, therefore, the widly used
relationship between the mean velocity and mean temperature is also shown to assess the scaling relations
in three-dimensional boundary layers. The mean temperature-velocity relation model given by Zhang
et.al [41], which is also known as the generalized reynolds analogy, is defined as

T

Te
=
Tw
Te

+
Trg − Tw

Te

up
up,e

+
Te − Trg

Te

(
up
up,e

)2

,

Trg = Te +
rgu

2
p,e

2Cp
, rg =

2Cp(Tw − T e)
u2p,e

− 2Pr
θtw

up,eτw
,

 , (14)

where the subscript e stands for the variables at the edge of boundary layer and the velocity up represents
the velocity parallel to the local surface. Figure 26 show the compaisons of the average temperature-
velocity relations. Under the corresponding conditions, it can be observed that when the crossflow
velocity is relatively low, the relationship between the mean velocity parallel to the wall up and the
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Figure 26: Comparison of the average temperature-velocity relations from simulations and generalized
reynolds analogy. From bottom to top, the positions successively correspond to the downstream locations
along the chordwise direction from the exact attachment line.

mean temperature T still conforms to the corresponding temperature-velocity relation, with acceptable
error margins. However, when the crossflow velocity increases beyond a certain threshold, significant
discrepancies arise between the temperature-velocity relation applicable to two-dimensional flows and
the numerical simulation results.

Based on the hypothesis given by Morkovin, transformations for reynolds stresses ũ′′i u′′j ,

(u∗i )
2

=
ρ

ρw

ũ′′2i
u2τ

, i = 1, 2, 3

(uiuj)
∗

=
ρ

ρw

ũ′′i u
′′
j

u2τ
, i 6= j

 , (15)

are used to shown the basic profiles along the wall normal directions and the essential features are
expected to follow the incompressible form. The profiles are presented as a function of the semilocal
scaling h∗. The results of a incompressible turbulent boundary layer at Reτ = 445 simulated by Jiménez
et.al [42] and a compressible turbulent boundary layer at Reτ = 453 simulated by Cogo et.al [43] are used
as references.

The reynolds stresses along the wall normal directions at the positions, from the exact attachment line
to further chordwise directions are shown in figure 27. As we anticipated, the computed and statistically
analyzed Reynolds stresses at and near the exact attachment line (figure 27(a)-(c)) agree well with the
results obtained from direct numerical simulations (DNS) for both incompressible and compressible flat-
plate boundary layers. The peak values and shapes of the Reynolds stresses in the streamwise direction
are consistent with the corresponding reference values. This agreement validates the resolution of our
current computational. However, the Reynolds stresses in the wall normal and chordwise directions
are smaller than the reference values. This discrepancy is likely due to the influence of the leading-
edge shock wave and the spanwise pressure gradient in the conditions of this study. At the leading
edge, the height of the shock wave from the wall is approximately 13 mm, which is about six times the
turbulent boundary layer thickness at that location. This suppresses the development of fluctuations in
this direction, resulting in lower corresponding Reynolds stresses (v∗)2. Along the chordwise direction
at the leading edge, the condition d/dx = 0 is satisfied only at the exact attachment line, hence the
Reynolds stresses (u∗)2 in this direction are also somewhat suppressed. As the flow develops to further
downstream locations along the chordwise direction, the spanwise Reynolds stresses (w∗)2, exhibit an
obvious decrease. However, this decrease of intensity along the spanwise direction do not reflect the
actual variations of intensity of turbulence. The real strength of turbulence can be identified in the
turbulent kinetic energy, , K = 0.5ũ′′i u

′′
i , ( see figure 28). It can be observed that as the position moves

in the chordwise direction away from the attachment line, the turbulent intensity first experiences a
slight increase followed by a decrease. This reflects the combined effects of enhanced shear caused by
the three-dimensional nature of the flow field and the favorable pressure gradient along the chordwise
direction.
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Figure 27: The reynold stress distributiones along the wall normal direction. The solid black, red and
blue lines stand for the (w∗)2, (v∗)2 and (u∗)2, respectively. The dashed line stands for (vw)∗. (a)− (i)
stands for the locations range from the exact attachment line to downstream chordwise direction.
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Figure 28: The distributions of the normalized turbulent kinetic energy at chordwise positions sξ.
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4 Conclusions
In this research, numerical simulations of roughness induced high-speed attachment-line boundary layers
over a real blunt configuration, without the infinity-span assumptions are performed. Based on linear
stability theory, the subcritical state of the possible transition along the attachment line is confirmed.
Two roughnesses based on the experimental tests are modeled and designed to trigger transitions. The
main findings of this study can be summarized as the following four points

• In the flow over a swept blunt body discussed in this paper, even without the assumption of infinite
sweep, if the incoming boundary layer reaches an asymptotic state (for laminar flow) or a fully de-
veloped turbulent state, the subsequent flow state also satisfies the infinite sweep assumption—the
boundary layer is homogeneous along the swept direction.

• The two different heights of roughness elements in the configuration studied in this paper result
in completely different transition characteristics. For lower-height roughness element, the element
alone cannot directly induce the corresponding boundary layer transition. Certain random per-
turbations need to be introduced during the simulation. For higher-height roughness element, it
can directly induce boundary layer transition by themselves without the need for additional per-
turbations. The flow near the roughness elements resembles that of a flat plate boundary layer,
where vortex structures are triggered in their vicinity. In the transition phenomena induced by
external disturbances and lower-height roughness elements, the transition mainly occurs directly
downstream of the wake of the roughness elements, but the wake vortices induced by the roughness
elements do not directly destabilize and lead to the final transition. In the transition simulation
with higher-height roughness element, the horseshoe vortices generated by the roughness elements
form corresponding streaks, which preferentially destabilize and lead to the transition to turbu-
lence, while the wake vortices directly behind the roughness elements destabilize and transition
further downstream.

• One-point power spectral analysis and bispectral analysis, together with the DMD analysis, are used
to identify the detailed transition mechanism. For the case of small roughness element, the wake
flow induced by the roughness act as a disturbance selector and amplifier, selecting and amplifying
the incoming disturbances from upstream. This causes disturbances with frequencies around 70
KHz to preferentially grow and lead to the final transition. Through DMD analysis, we can
infer that the high frequency instability is strongly linked to the separation bubble upstream of the
roughness elements. For larger roughness elements, there exists a low-frequency absolute instability
in the wake induced by the roughness elements. This low-frequency disturbance, around 10 KHz,
generates corresponding low-frequency streaks, and the high frequency secondary instability of
these low-frequency streaks is the primary reason for the transition in the wake.

• This study further analyzes the complete later-stage transition and the final turbulent processes
of a three-dimensional attachment-line boundary layer. When the turbulent boundary layer is
fully developed, it is found that the spanwise velocity still conforms to the law-of-the-wall even
under conditions with crossflow and pressure gradients. Among several commonly used trans-
formations, all but the Trettle & Larsson transformation yield satisfactory results, bringing the
velocity profiles back to those of an incompressible flow. In cases with moderate crossflow velocity,
the temperature-velocity transformation relationship retains a good predictive accuracy, but this
relationship becomes unsuitable when the crossflow velocity increases significantly. The analysis of
the anisotropic Reynolds stress tensors and the turbulent kinetic energy balance indicates that the
fundamental characteristics of the three-dimensional turbulent boundary layer remain consistent
with those of the two-dimensional turbulent boundary layer.
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