Oral presentation | Turbulence simulation (DNS,LES,RANS)

Turbulence simulation(DNS,LES,RANS)-I

Wed. Jul 17, 2024 2:00 PM - 4:00 PM Room B

[8-B-02] Large Eddy Simulation in the Indoor Vertical Farming modelling

*Ali Ashnani¹, Alpo Laitinen², Ville Vuorinen³, Ossi Kaario⁴ (1. Aalto University, Department of Mechanical Engineering, 2. Aalto University, Department of Mechanical Engineering, 3. Aalto University, Department of Mechanical Engineering)
Keywords: Large Eddy Simulation, Vertical Farming simulation, Carbon Dioxide propagation, Buoyancy

12th International Conference of Computational Fluid Dynamics

LARGE EDDY SIMULATION IN THE INDOOR VERTICAL FARMING MODELLING

Ali A. Ashnani*, Alpo Laitinen*, Ville Vuorinen*, and Ossi Kaario*

Result

Conclusion

- Enclosed cultivation systems with high controllability
 Artificial lighting
- Soilless cultivation method
- Without natural ventilation

- High water efficiency
- High land use efficiency
- Independence from seasonal and geographical limitations

Aalto University
School of Engineering

LARGE EDDY
SIMULATION
IN THE
INDOOR

Introduction

Geometry

Governing equation

Grid Resolution

Result

Conclusion

LES approach K-equation modeling

In this study

Eulerian-Lagrangian Free fall droplets

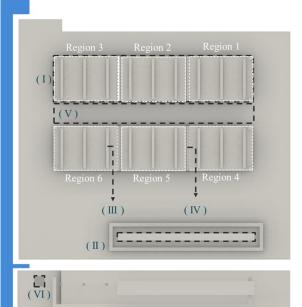
Transpiration and Photosynthesis modeling

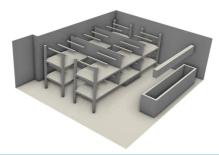
Heat transfer Simulation

Asito University School of Engineering

LARGE EDDY SIMULATION IN THE INDOOR VERTICAL FARMING

Introduction


Geometry


Governing equation

Grid Resolution

Results

Conclusion

	Canopy tray	Humidity source, CO2 sink
II)	Dehumidifier	Sink of enthalpy, Sink of humidity, Source of Eulerian-Lagrangian water droplets
III)	Lamps	Constant heat flux
IV)	Curtains	Air manipulators, acts as walls
	CO2 distributor pipe	CO2 Source
VI)	Inlet Fan	Uniform velocity input

LARGE EDDY SIMULATION IN THE INDOOR VERTICAL FARMING

Introduction

Geometry

Governing equation

Grid Resolution

Results

Conclusion

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\frac{\partial}{\partial t}(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla p + \rho g + \nabla \cdot \left(2\mu_{eff}D(\mathbf{u})\right) - \nabla \left(\frac{2}{3}\mu_{eff}(\nabla \cdot \mathbf{u})\right) + \rho \mathbf{F}$$

$$\frac{\partial}{\partial t}(\rho h) + \nabla \cdot (\rho \mathbf{u} h) + \frac{\partial}{\partial t}(\rho K) + \nabla \cdot (\rho \mathbf{u} K) - \frac{\partial p}{\partial t} = -\nabla \cdot \mathbf{q} + \nabla \cdot (\tau \cdot \mathbf{u}) + \rho r + \rho \mathbf{g} \cdot \mathbf{u}$$

$$\frac{\partial c}{\partial t} + \nabla \cdot (c\mathbf{u}) = D\nabla^2(c)$$

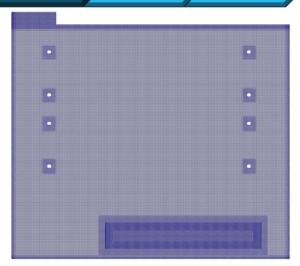
$$\mathsf{F}_{\mathrm{D}} = \frac{3\,\mu_{c}\mathsf{C}_{\mathrm{D}}\mathsf{Re}_{p}}{4\,\rho_{n}d_{n}^{2}}$$

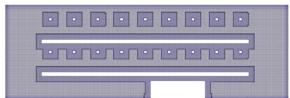
Autio University School of Engineering

LARGE EDDY SIMULATION IN THE INDOOR VERTICAL FARMING

Governing equation

Grid Resolution


 $\operatorname{Results}$


Conclusion

Grid Resolution

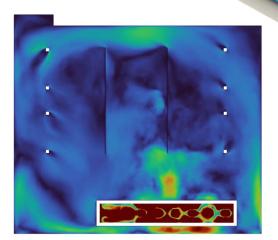
Fine Grid: 32,173,872 Medium Grid: 14,141,949 Coarse Grid: 7,283,097

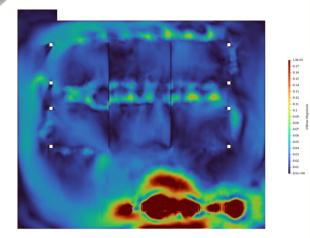
Mesh Comparison Deviation			
Coarse and Medium (Tray 1)	1,10 %		
Medium and Fine (Tray 1)	0,82 %		
Coarse and Medium (Tray 2)	0,76 %		
Medium and Fine (Tray 2)	0,50 %		
Coarse and Medium (Horizontal)	0,96 %		
Medium and Fine (Horizontal)	0,41 %		

Aalto University School of Engineering

LARGE EDDY SIMULATION IN THE INDOOR VERTICAL FARMING

Introduction Geometry


Governing equation

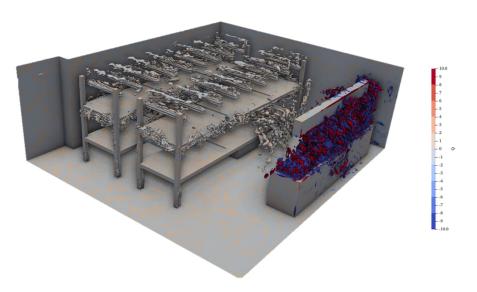

Grid Resolution

Results

Conclusion

Velocity Field

Introduction Geometry

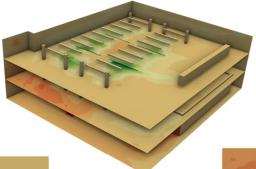

Governing equation

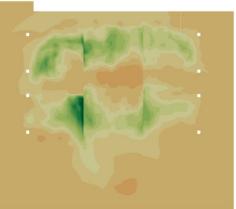
Grid Resolution

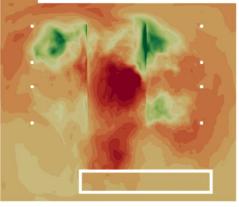
Results

Conclusion

Q criterion



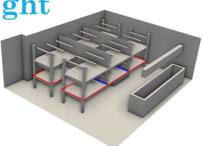

Introduction

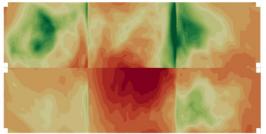

Geometry

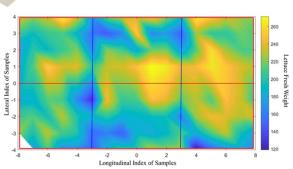
Results

 CO_2 Field

Introduction Geometry

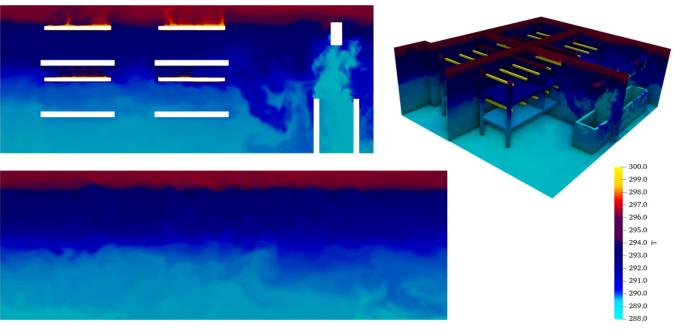

Governing equation


Grid Resolution


Results

Conclusion

Correlation of CO2 and Lettuce fresh weight



Introduction Geometry Governing equation

Grid Resolution

Results

Temperature Field

Conclusion

Concluding remarks

- The correlation of experimental results and the flow field characteristics simulations manifest the capability of LES in the simulation of Vertical Farming system
- The implementation of curtains, reduces the accumulation of CO2 in the vicinity of them
- The second level of trays unfavorably has less CO2 in the simulations, which suggest improvement in the CO2 injector utility in the system.

Thank you for your attention