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Background & Objective

Magnetohydrodynamics (MHD) can deal with macroscopic phenomena caused by the interaction 
of plasma flow and magnetic fields and is applied in many research fields.

Computational fluid dynamics (CFD) is often used as an effective research tool.

Thermal protection system for re-entry capsule
MHD flow control [2]

Aerospace Engineering
Solar internal current [1]

Astrophysics

MHD simulation of LHD 
(Large Helical Device) plasma [3]

Nuclear fusion

[1] https://sdo.gsfc.nasa.gov/assets/img/browse/2010/08/19/20100819_003221_4096_0304.jpg
[2] Yoshino, T., Fujino, T. and Ishikawa, M., “Possibility of Thermal Protection in Earth Re-entry Flight

by MHD Flow Control with Air-Core Circular Magnet,” IEEJ Trans Elec Electron Eng, 4(2009), 510-517.
[3] https://soken.nifs.ac.jp/en/archives/about/simulation_course

 Application of magnetohydrodynamics
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𝑥

𝑞

𝑥

𝑞

Time integration

Initial data Reconstruction Flux calculation

Data reconstruction prior to the flux calculation can improve the accuracy of the calculation.

The slope is limited for numerical stabilization near discontinuities such as shock waves.

Background & Objective
 Finite volume method
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Background & Objective

Advantage:
- Robust
- Low calculation cost
- Easy to apply to unstructured grid systems

Drawback:
- Dissipative

MUSCL [4]

Higher order schemes (WENO [5], MP [6] and others)

Advantage:
- High resolution

Drawback:
- High calculation cost
- Difficult to apply to unstructured grid systems
- (owing to large stencil size)

MHD shock tube test

 Reconstruction schemes

[4] Van Leer, B., “Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method,” 
J. Comput. Phys. 32 (1979) 101–136.

[5] Liu, X. D., Osher, S., and Chan, T., “Weighted essentially non-oscillatory schemes,” J. Comput. Phys. 115 (1994) 200–212.
[6] Suresha, A. and Huynh, H. T., “Accurate monotonicity-preserving schemes with Runge-Kutta time stepping,” J. Comput. Phys. 136 (1997) 83–99.
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Background & Objective

𝑉୑୘ = 1 − 𝜁 𝑉୑୙ୗେ୐ + 𝜁𝑉୘ୌ୍୒େ

Use polynomial function Use hyperbolic tangent function

𝑉෠௜
୑୙ୗେ୐ 𝑥 = 𝑉௜ +

𝑉௜ାଵ − 𝑉௜ିଵ

2∆𝑥
𝑥 − 𝑥௜ +

3𝜅

2

𝑉௜ାଵ − 2𝑉௜ + 𝑉௜ିଵ

∆𝑥ଶ 𝑥 − 𝑥௜
ଶ −

∆𝑥ଶ

12 𝑉෠௜
୘ୌ୍୒େ 𝑥 = min 𝑉௜ିଵ, 𝑉௜ାଵ +

𝑉௜ାଵ − 𝑉௜ିଵ

2
1 + 𝜃 tanh 𝛽 𝑋௜ − 𝑑௜

 For resolving smooth regions  For resolving discontinuous distributions

 Hybrid MUSCL-THINC (MT) [7]

[7] Chiu, T. Y., Niu, Y. Y., and Chou, Y. J., "Accurate Hybrid AUSMD Type Flux Algorithm with Generalized Discontinuity Sharpening Reconstruction for Two-Fluid 
Modeling," J. Comput. Phys., 443 (2021), 110540.

 MUSCL  THINC

5
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Background & Objective

From our preliminary numerical experiments, applying MT to MHD simulations results in oscillatory solutions.

Objective:
- Apply MT to MHD simulations.
- Present a method where complex MHD discontinuities are captured robustly and sharply.

D
e

n
si

ty
,𝜌

x

Numerical
oscillation

Vicinity of compound waveOverall view

MHD shock tube test

 Hybrid MUSCL-THINC (MT) [7]

[7] Chiu, T. Y., Niu, Y. Y., and Chou, Y. J., "Accurate Hybrid AUSMD Type Flux Algorithm with Generalized Discontinuity Sharpening Reconstruction for Two-Fluid 
Modeling," J. Comput. Phys., 443 (2021), 110540.
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MHD has governing equations that incorporate Faraday's law of induction into the fluid equations.

Governing Equations

𝜕𝑼

𝜕𝑡
+ ∇ ȉ 𝑭 = 0

 Ideal MHD equation (conservation form)

𝑼 =
𝜌

𝜌𝒗
𝑒

, 𝑭 =

𝜌𝒗
𝜌𝒗𝒗 + 𝑝𝑰

𝑒 + 𝑝 𝒗

𝜕𝑼

𝜕𝑡
+ ∇ ȉ 𝑭 = 0

𝑼 =

𝜌
𝜌𝒗
𝑒
𝑩

, 𝑭 =

𝜌𝒗
𝜌𝒗𝒗 + 𝑝்𝑰 − 𝑩𝑩

𝑒 + 𝑝் 𝒗 − 𝑩 𝒗 ȉ 𝑩
𝒗𝑩 − 𝑩𝒗

 Gas dynamics  MHD

Induction equation
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 Characteristic waves of the gas dynamics and MHD

The MHD Riemann problem has more characteristic waves.  There is a variety of MHD discontinuities.

 Gas dynamics

Shock wave
Tangential discontinuity
Contact discontinuity

sound

time

x

sound

entropy

 3 waves

 MHD

Fast shock wave
Slow shock wave
Tangential discontinuity
Contact discontinuity
Rotational discontinuity

Compressible

fast

slow
slow

fast

time

x

entropy

Alfvén
Alfvén

 7 waves

Governing Equations

9
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Methodology

Slope limiting
(by minmod)

𝑉෠௜
୑୙ୗେ୐ 𝑥 = 𝑉௜ +

𝑉௜ାଵ − 𝑉௜ିଵ

2∆𝑥
𝑥 − 𝑥௜ +

3𝜅

2

𝑉௜ାଵ − 2𝑉௜ + 𝑉௜ିଵ

∆𝑥ଶ 𝑥 − 𝑥௜
ଶ −

∆𝑥ଶ

12

Interpolation function using a quadratic polynomial:

𝜓 𝑟 = max 0, min 1, 𝑟 .

The minmod limiter:

 MUSCL [4]

𝑖𝑖 − 1 𝑖 + 1

𝑉

𝑖𝑖 − 1 𝑖 + 1

𝑉

𝑉෠௅,௜ାଵ ଶ⁄
୑୙ୗେ୐ = 𝑉௜ +

1 − 𝜅

4
𝜓 𝑟 𝑉௜ − 𝑉௜ିଵ +

1 + 𝜅

4
𝜓

1

𝑟
𝑉௜ାଵ − 𝑉௜ ,

𝑉෠ோ,௜ିଵ ଶ⁄
୑୙ୗେ୐ = 𝑉௜ −

1 − 𝜅

4
𝜓

1

𝑟
𝑉௜ାଵ − 𝑉௜ −

1 + 𝜅

4
𝜓 𝑟 𝑉௜ − 𝑉௜ିଵ ,

Cell interface values with a slope limiter:

[4] Van Leer, B., “Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method,” J. Comput. Phys. 32 (1979) 101–136.

11
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Methodology

𝑉෠௜
୘ୌ୍୒େ 𝑥 = min 𝑉௜ିଵ, 𝑉௜ାଵ +

𝑉௜ାଵ − 𝑉௜ିଵ

2
1 + 𝜃 tanh 𝛽 𝑋௜ − 𝑑௜

Interpolation function using a hyperbolic tangent:

𝑋௜ =
𝑥 − 𝑥௜ିଵ ଶ⁄

𝑥௜ାଵ ଶ⁄ − 𝑥௜ିଵ ଶ⁄
, 𝜃 = sign 𝑉௜ାଵ − 𝑉௜ିଵ , 𝑑௜ =

1

2𝛽
ln

1 − 𝐴

1 + 𝐴

𝐴 =
𝐵 cosh 𝛽⁄ − 1

tanh 𝛽
,  𝐵 = exp 𝜃𝛽

2 𝑉௜ − min 𝑉௜ିଵ, 𝑉௜ାଵ

𝑉௜ାଵ − 𝑉௜ିଵ
− 1

NOTE: When a target cell is located at a local extremum, 
the cell is not reconstructed (namely, 1st-order accuracy) 
because the hyperbolic tangent function cannot be defined.

For a monotone distribution

For a local extremum

 THINC [8]

𝑖𝑖 − 1 𝑖 + 1

𝑉

𝑖𝑖 − 1 𝑖 + 1

𝑉

𝑉෠௅,௜ାଵ ଶ⁄
୘ୌ୍୒େ = 𝑉୫୧୬ +

∆𝑉

2
1 + 𝜃

tanh 𝛽 + 𝐴

1 + 𝐴 tanh 𝛽
,

𝑉෠ோ,௜ିଵ ଶ⁄
୘ୌ୍୒େ = 𝑉୫୧୬ +

∆𝑉

2
1 + 𝜃𝐴 .

Cell interface values:

[8] F. Xiao, Y. Honma, T. Kono,“A simple algebra interface capturing scheme using hyperbolic tangent function ”, Int. J. Numer. Methods Fluids, 48, (2005), pp. 1023–1040.
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𝑖𝑖 − 1 𝑖 + 1

𝑉

Methodology

- 𝛽 is a user-specified parameter.
- 𝛽 determines a maximum slope of the hyperbolic tangent function.
- A value between 𝛽 = 1.6 – 3.0 is generally employed.
- A larger 𝛽 provides a sharper slope, albeit with the higher risk of numerical oscillations.

 THINC [8]

𝑉෠௜
୘ୌ୍୒େ 𝑥 = min 𝑉௜ିଵ, 𝑉௜ାଵ +

𝑉௜ାଵ − 𝑉௜ିଵ

2
1 + 𝜃 tanh 𝛽 𝑋௜ − 𝑑௜

Interpolation function using a hyperbolic tangent:

[8] F. Xiao, Y. Honma, T. Kono,“A simple algebra interface capturing scheme using hyperbolic tangent function ”, Int. J. Numer. Methods Fluids, 48, (2005), pp. 1023–1040.

13

14
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𝜁 = 1 − min
𝑉෠௅,௜ାଵ ଶ⁄

୑୙ୗେ୐ − 𝑉෠ோ,௜ିଵ ଶ⁄
୑୙ୗେ୐ + 𝜀௭

𝑉௜ାଵ − 𝑉௜ + 𝜀௭
,
𝑉෠௅,௜ାଵ ଶ⁄

୑୙ୗେ୐ − 𝑉෠ோ,௜ିଵ ଶ⁄
୑୙ୗେ୐ + 𝜀௭

𝑉௜ − 𝑉௜ିଵ + 𝜀௭

Methodology

𝜁 → ቊ
0 for continuous distributions      → MUSCL is dominant.
1 for discontinuous distributions → THINC is dominant.

We implemented MT to MHD simulations so that each component of

the primitive variable vector 𝑽 = 𝜌, 𝑢, 𝑣, 𝑤, 𝑝, 𝐵௫, 𝐵௬, 𝐵௭
்

is
reconstructed independently.
This scheme will be called MT-MHD in this study.

 Hybrid MUSCL-THINC (MT) [7]

𝑉෠௅,௜ାଵ ଶ⁄
୑୘ = 1 − 𝜁 𝑉෠௅,௜ାଵ ଶ⁄

୑୙ୗେ୐ + 𝜁𝑉෠௅,௜ାଵ ଶ⁄
୘ୌ୍୒େ

𝑉෠ோ,௜ିଵ ଶ⁄
୑୘ = 1 − 𝜁 𝑉෠ோ,௜ିଵ ଶ⁄

୑୙ୗେ୐ + 𝜁𝑉෠ோ,௜ିଵ ଶ⁄
୘ୌ୍୒େ

𝑖𝑖 − 1 𝑖 + 1

𝑉

𝜁 → 0 for a continuous distribution

𝑖𝑖 − 1 𝑖 + 1

𝑉

𝜁 → 1 for a discontinuous distribution

Close to
MUSCL

Close to
THINC

[7] Chiu, T. Y., Niu, Y. Y., and Chou, Y. J., "Accurate Hybrid AUSMD Type Flux Algorithm with Generalized Discontinuity Sharpening 
Reconstruction for Two-Fluid Modeling," J. Comput. Phys., 443 (2021), 110540.
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Numerical example
 Shock tube test of gas dynamics [9]

𝜌
𝑝
𝑢
𝑣
𝑤
𝐵௫

𝐵௬

𝐵௭ ௅

=

1
1
0
0
0
0
0
0

 for 0 ≤ 𝑥 < 0.5,

𝜌
𝑝
𝑢
𝑣
𝑤
𝐵௫

𝐵௬

𝐵௭ ோ

=

0.125
0.1
0.0
0.0
0.0
0
0
0

 otherwise.

- The computational domain [0, 1] is divided into 400 uniform cells. 

- The specific heat ratio is set to 𝛾 = 1.4.

High-pressure
High-density

Low-pressure
Low-density

0 1

𝑥

divided into 400 cells

[9] Sod, G. A., “A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws”, Journal of Computational Physics, vol. 27, No. 1, 1978, pp.1–31.
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Numerical example

- In this test, MT-MHD is equivalent to MT.
- The discontinuities are sharpened without overshoot if 𝛽 ≤ 2.8.

D
e

ns
ity

,
𝜌

x
Contact discontinuity Shock wave

 Shock tube test of gas dynamics [9]

[9] Sod, G. A., “A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws”, Journal of Computational Physics, vol. 27, No. 1, 1978, pp.1–31.

17

18



 ICCFD12

2024/7/3

10

Jul. 17 2024 THE 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS 19

Numerical example
 MHD shock tube test [10]

𝜌
𝑝
𝑢
𝑣
𝑤
𝐵௫

𝐵௬

𝐵௭ ௅

=

1.0
1.0
0.0
0.0
0.0

0.75
1.0
0.0

 for 0 ≤ 𝑥 < 0.5,

𝜌
𝑝
𝑢
𝑣
𝑤
𝐵௫

𝐵௬

𝐵௭ ோ

=

0.125
0.1
0.0
0.0
0.0

0.75
−1.0
0.0

 otherwise.

- The computational domain [0, 1] is divided into 400 uniform cells. 

- The specific heat ratio is set to 𝛾 = 2.0.

[6] Brio, M., and Wu, C.C., “An upwind differencing scheme for the equations of ideal
magnetohydrodynamics”, Journal of Computational Physics, vol. 75, 1988, pp.400-422.

High-pressure
High-density

Low-pressure
Low-density

Line: magnetic field

0 1

𝑥

divided into 400 cells

[10] Brio, M., and Wu, C.C., “An upwind differencing scheme for the equations of ideal magnetohydrodynamics”, Journal of Computational Physics, vol. 75, 1988, pp.400–422.
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Numerical example

D
e

n
si

ty
,𝜌

x

(b)

(c)

(d)

(a) Overall view (c) Contact discontinuity (d) Shock wave

(b) Vicinity of compound wave

Good: The MHD discontinuities are sharply captured by MT-MHD.
Bad : The solutions are oscillatory because of the complex phenomena of

MHD (especially, the vicinity of the compound wave).
 A more careful reconstruction strategy is necessary in MHD simulations

 MHD shock tube test [10]

[10] Brio, M., and Wu, C.C., “An upwind differencing scheme for the equations of ideal magnetohydrodynamics”, Journal of Computational Physics, vol. 75, 1988, pp.400–422.

19
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Analysis

D
e

ns
ity

,
𝜌

x
Contact discontinuity Shock wave

- The contact discontinuity is effectively sharpened by increasing 𝛽.
- The sharpness of the shock tube is almost constant regardless of 𝛽.

 Since nonlinear discontinuities, namely shock waves, have own mechanisms of physical compression,
 it is obvious that additional artificial compression is excessive. 

Effectively sharpened
by increasing 𝛽.

21
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Analysis

The density gradient is defined as 𝑔 = 𝜌௜ାଵ − 𝜌௜ ∆𝑥⁄ .
We will observe the time evolution of the density gradient in the shock tube test of gas dynamics.

x

D
e

n
si

ty
 g

ra
d

ie
n

t,
 

𝜌
௜ା

ଵ
−

𝜌
௜

∆
𝑥

⁄

Density gradient distributions of MUSCL

D
e

n
si

ty
, 𝜌

x

Density distributions of MUSCL

 Time evolution of the density gradient
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D
e

n
si

ty
g

ra
d

ie
n

t,
𝜌

௜ା
ଵ

−
𝜌

௜
∆

𝑥
⁄

𝑥

Analysis

Displaying the time evolution of the density gradient at shorter intervals, 
we can see the trajectories of the sharpness of the contact discontinuity and shock wave.

 Time evolution of the density gradient

Trajectory of the shock wave
from 𝑡 = 0.025 to 0.25.

Propagation direction

Trajectory of the contact discontinuity
from 𝑡 = 0.025 to 0.25.

Propagation direction

23
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Contact discontinuity Shock wave
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Analysis

From these trajectory figures,
- the MUSCL calculations are significantly dissipative even using higher grid-resolution at the contact discontinuity.
 MT-MHD becomes superior as the calculation time is longer because it can maintain the sharpness.

- the advantage of MT is not effective at the shock wave because the discontinuity does NOT dissipate even with
MUSCL.

 Trajectory: Effect of grid resolution

Jul. 17 2024 THE 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS 26

MT Targeting Linear discontinuity for MHD (MTTL-MHD)
 Strategy of MTTL-MHD

From the above analyses,
- artificial compression to linear discontinuities can maintain its sharpness.
- artificial compression to nonlinear discontinuities is not so effective
-  and may cause numerical oscillations due to excessive compression.

Strategy of the new scheme: 
- Only the linear discontinuities are artificially compressed by THINC.
- The artificial compression of THINC is deactivated at nonlinear discontinuities.

Based on this strategy, we will replace the constant parameter 𝛽 of MT-MHD by the following new 𝛽:
𝛽 = 𝜙𝛽୫ୟ୶ + 1 − 𝜙 𝛽୫୧୬

where 𝜙 is a weight function as

𝜙 → ቊ
0 for nonlinear regions
1 for linear regions        

.

This modification allows linear discontinuities to be sharply captured
and avoids excessive compression against nonlinear discontinuities.

25
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MT Targeting Linear discontinuity for MHD (MTTL-MHD)

The weight function 𝜙 is defined using this ratio as

𝜙 =
1 − cos 𝜋𝜙෠

2
,

where

𝜙෠ = min 1, max 0,
𝑟௣௧,୫ୟ୶ − 𝑟௣௧

𝑟௣௧,୫ୟ୶ − 𝑟௣௧,୫୧୬
,

This 𝜙 behaves as shown in the right figure and can detect nonlinearity.
In this presentation, we will use 𝑟௣௧,୫ୟ୶ = 1.03, 𝑟௣௧,୫୧୬ = 1.01, 𝛽୫୧୬ = 1.1.

 Weight function 𝜙

𝛽 = 𝜙𝛽୫ୟ୶ + 1 − 𝜙 𝛽୫୧୬

𝜙 → ቊ
0 for nonlinear regions
1 for linear regions        

Nonlinearity measure: Total pressure ratio

where total pressure is defined as

𝑝୘ = 𝑝 +
𝑩 ଶ

2
= gas pressure + magnetic pressure.

𝑟௣௧ =
𝑝୘,୫ୟ୶

𝑝୘,୫୧୬ + 𝜀௭
,

𝜙 = 0

𝑟௣௧ = 𝑝்,୫ୟ୶ 𝑝்,୫୧୬⁄

Strongly non-linearLinear

𝜙 = 1

This new scheme will be called MTTL-MHD in this study.

Jul. 17 2024 THE 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS 28
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- MTTL-MHD can calculate the vicinity of the compound wave without numerical oscillation.
- MTTL-MHD can effectively sharpen the contact discontinuity.

Numerical example
 MHD shock tube test [7]

D
e

n
si

ty
,𝜌

x

(b)

(c)

(d)

(a) Overall view (c) Contact discontinuity (d) Shock wave

(b) Vicinity of compound wave

[7] Chiu, T. Y., Niu, Y. Y., and Chou, Y. J., "Accurate Hybrid AUSMD Type Flux Algorithm with Generalized Discontinuity Sharpening Reconstruction for Two-Fluid 
Modeling," J. Comput. Phys., 443 (2021), 110540.

Sharpened
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Numerical example
 MHD shock tube test [7]

(a) Overall view

D
e

ns
ity

, 
𝜌

𝛽

(b)

(c)

(b) Contact discontinuity (c) Slow shock wave

MTTL-MHD with 𝛽୫ୟ୶ = 2.0, 𝛽୫୧୬ = 1.1

- The large 𝛽 is applied to the contact discontinuity.
- The small 𝛽 is applied to the slow shock, and the artificial compression by THINC is deactivated.

 MTTL-MHD can avoid excessive compression to nonlinear discontinuities and achieve robust and high resolution.

[7] Chiu, T. Y., Niu, Y. Y., and Chou, Y. J., "Accurate Hybrid AUSMD Type Flux Algorithm with Generalized Discontinuity Sharpening Reconstruction for Two-Fluid 
Modeling," J. Comput. Phys., 443 (2021), 110540.
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Numerical example

Line: initial magnetic field 𝑩

𝜌
𝑝
𝑢
𝑣
𝑤
𝐵௫

𝐵௬

𝐵௭ ୧୬

=

1
10ଶ

0
0
0

10sin𝜃଴

10cos𝜃଴

0

,

𝜌
𝑝
𝑢
𝑣
𝑤
𝐵௫

𝐵௬

𝐵௭ ୭୳୲

=

1
1
0
0
0

10sin𝜃଴

10cos𝜃଴

0

- 𝜃଴ = 𝜋 4.⁄

- Calculate the time evolution of the high-pressure region placed discontinuously 

 in the center of the computational domain under the application of a magnetic field.

- The computational domain [-0.5, 0.5] × [-0.5, 0.5] is divided into 256 × 256 cells. 

- The specific heat ratio is set to 𝛾 = 5 3⁄ .

 MHD blast wave test (Gardiner & Stone, [11])

[11] Gardiner, T.A., and Stone, J.M., “An unsplit Godunov method for ideal MHD via constrained transport”, Journal of Computational Physics, vol. 205, 2005, pp.509–539.
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Numerical example
 MHD blast wave test (Gardiner & Stone, [11])

MUSCL, 
1024x1024 cells

Reference MUSCL MT-MHD (𝛽 = 2.4) MTTL-MHD (𝛽୫ୟ୶ = 2.4)

- Both MT-MHD and MTTL-MHD can solve this test without serious problem.
- MTTL-MHD can solve the regions surrounded by the red line more robustly than MT-MHD.

[11] Gardiner, T.A., and Stone, J.M., “An unsplit Godunov method for ideal MHD via constrained transport”, Journal of Computational Physics, vol. 205, 2005, pp.509–539.
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Numerical example
 MHD blast wave test (Gardiner & Stone, [11])

r1-axis

MT-MHD MTTL-MHD

Ref. (MUSCL, 1024×1024 cells)
MUSCL
MT-MHD, 𝛽 = 1.6
MT-MHD, 𝛽 = 2.0
MT-MHD, 𝛽 = 2.4
MT-MHD, 𝛽 = 2.8

Ref. (MUSCL, 1024×1024 cells)
MUSCL
MTTL-MHD, 𝛽୫ୟ୶ = 1.6
MTTL-MHD, 𝛽୫ୟ୶ = 2.0
MTTL-MHD, 𝛽୫ୟ୶ = 2.4
MTTL-MHD, 𝛽୫ୟ୶ = 2.8

Contact
disc.

Slow
shock
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Numerical example
 MHD blast wave test (Gardiner & Stone, [11])

Ref. (MUSCL, 1024×1024 cells)
MUSCL
MT-MHD, 𝛽 = 1.6
MT-MHD, 𝛽 = 2.0
MT-MHD, 𝛽 = 2.4
MT-MHD, 𝛽 = 2.8

Ref. (MUSCL, 1024×1024 cells)
MUSCL
MTTL-MHD, 𝛽୫ୟ୶ = 1.6
MTTL-MHD, 𝛽୫ୟ୶ = 2.0
MTTL-MHD, 𝛽୫ୟ୶ = 2.4
MTTL-MHD, 𝛽୫ୟ୶ = 2.8

r2-axis

MTTL-MHD where the artificial compression is weakened at nonlinear discontinuities 
can solve this test more robustly than MT-MHD.

[11] Gardiner, T.A., and Stone, J.M., “An unsplit Godunov method for ideal MHD via constrained transport”, Journal of Computational Physics, vol. 205, 2005, pp.509–539.
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Outline

1. Background & Objective

2. Governing Equations

3. Methodology
a. MUSCL
b. THINC
c. Hybrid MUSCL-THINC

4. Numerical Example of MT-MHD
a. Shock tube test of gas dynamics
b. MHD shock tube test

5. Analysis & Modification of MT-MHD

6. Numerical Example of MTTL-MHD
a. MHD shock tube test
b. MHD blast wave test

7. Conclusion
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Conclusion

In this study, we applied hybrid MUSCL-THINC to MHD simulations as MT-MHD and MTTL-MHD.
We obtained the following findings from the discussion using trajectories:

- Nonlinear discontinuities: Do not dissipate as time passes due to its own physical compression.
Artificial compression to shock waves is excessive and results in numerical oscillations.

- Linear discontinuities: Do not have a mechanism to maintain sharpness and tend to dissipate as time passes.
The artificial compression by THINC can maintain the sharpness effectively.

- By using physical information (in this study, nonlinearity) as well as the distribution shape of physical quantities,
the performance of MT can be improved without increasing stencil size.

- The results of 1D and 2D MHD numerical tests showed that MTTL-MHD can sharply capture only linear
discontinuities and avoid numerical oscillation due to excessive compression to nonlinear discontinuities.
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Governing Equations
 Ideal MHD equation (conservation form)

𝑝் = 𝑝 +
𝑩 ଶ

2

𝑒 =
𝑝

𝛾 − 1
+

𝜌 𝒖 ଶ

2
+

𝑩 ଶ

2

𝑼 : A vector of conservative variables

𝑭 : A flux vector

𝑰 : Identity matrix

𝜌 : Density

𝒗 = 𝑢 𝑣 𝑤 ் : A velocity vector

𝑩 = 𝐵௫ 𝐵௬ 𝐵௭
் : A magnetic field vector

𝑝் : Total pressure

𝑝 : Gas pressure

𝑒 : Total energy density

𝛾 : Specific heat ratio

𝜕𝑼

𝜕𝑡
+ ∇ ȉ 𝑭 = 0

𝑼 =

𝜌
𝜌𝒗
𝑒
𝑩

, 𝑭 =

𝜌𝒗
𝜌𝒗𝒗 + 𝑝்𝑰 − 𝑩𝑩

𝑒 + 𝑝் 𝒗 − 𝑩 𝒗 ȉ 𝑩
𝒗𝑩 − 𝑩𝒗
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Governing Equations
 1D ideal MHD equation (discretization form)

𝑼௜
௡ାଵ = 𝑼௜

௡ −
𝛿𝑡

∆௜
𝑭෡௜ାଵ ଶ⁄ − 𝑭෡௜ିଵ ଶ⁄

Discretization
𝛿𝑡 : A time step size

𝑛 : A time step index

∆௜ : A volume of a 𝑖-th cell

𝑼௜
௡ : Physical quantities of a 𝑖-th cell at time 𝑛𝛿𝑡

𝑭෡௜±ଵ : Numerical fluxes at cell interfaces

𝜕𝑼

𝜕𝑡
+ ∇ ȉ 𝑭 = 0, 𝑼 =

𝜌
𝜌𝒗
𝑒
𝑩

, 𝑭 =

𝜌𝒗
𝜌𝒗𝒗 + 𝑝்𝑰 − 𝑩𝑩

𝑒 + 𝑝் 𝒗 − 𝑩 𝒗 ȉ 𝑩
𝒗𝑩 − 𝑩𝒗
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Methodology
 Behavior of 𝜁

𝜁 = 1 − min
𝑉෠௅,௜ାଵ ଶ⁄

୑୙ୗେ୐ − 𝑉෠ோ,௜ିଵ ଶ⁄
୑୙ୗେ୐ + 𝜀௭

𝑉௜ାଵ − 𝑉௜ + 𝜀௭
,
𝑉෠௅,௜ାଵ ଶ⁄

୑୙ୗେ୐ − 𝑉෠ோ,௜ିଵ ଶ⁄
୑୙ୗେ୐ + 𝜀௭

𝑉௜ − 𝑉௜ିଵ + 𝜀௭

𝜁 =
max ∆𝑉ଵ, ∆𝑉ଶ − min ∆𝑉ଵ, ∆𝑉ଶ

max ∆𝑉ଵ, ∆𝑉ଶ

∆𝑉ଵ

∆𝑉ଶ

𝑉

𝑉௜ 𝑉௜ାଵ𝑉௜ିଵ
When the minmod limiter is used, …

Compared

𝜁 is equivalent to a distribution curvature normalized by max ∆𝑉ଵ, ∆𝑉ଶ .

𝑉௜ିଵ − 2𝑉௜ + 𝑉௜ାଵ

∆𝑥ଶ =
max ∆𝑉ଵ, ∆𝑉ଶ − min ∆𝑉ଵ, ∆𝑉ଶ

∆𝑥ଶ

A discretization form of a second derivative:
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𝜁 works as a curvature detector and has a large value at the heads and tails of the discontinuities.

Numerical example

(a) Overall view

D
en

si
ty

, 𝜌

W
eight, 𝜁

x

(b)
(c)

(b) Contact discontinuity (c) Shock wave

 Shock tube test of gas dynamics [9]
𝑞୑୘ = 1 − 𝜁 𝑞୑୙ୗେ୐ + 𝜁𝑞୘ୌ୍୒େ

𝜁 → ቊ
0 for continuous distributions      → MUSCL is dominant.
1 for discontinuous distributions → THINC is dominant.

[9] Sod, G. A., “A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws”, Journal of Computational Physics, vol. 27, No. 1, 1978, pp.1–31.
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Methodology

When a target cell is located at a local extremum, the cell is not reconstructed (namely, 1st-
order accuracy) because the hyperbolic tangent function cannot be defined. Therefore, it is
necessary to confirm either the stencil has a monotone or extremum profile. For this
confirmation, we use a following inequality:

𝑉௜ାଵ − 𝑉௜ 𝑉௜ − 𝑉௜ିଵ > 𝜀ெ,
where 𝜀ெ is a tolerance value, and we used 𝜀ெ = 10ି଺ . This inequality can avoid
unnecessary computation of THINC when monotone distributions accidentally occur owing to
small numerical errors. This enables reduction of calculation costs and improvement of
robustness in practical calculations.

 Monotonicity confirmation in MT-MHD
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From these trajectory figures,
- the larger 𝛽 can maintain the sharpness of the contact discontinuity as the calculation time passes.
- the sharpness of the shock wave does NOT dissipate as the time passes even if only MUSCL is used.

Analysis
 Trajectory: Effect of 𝛽

Contact discontinuity Shock wave
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Analysis
 Trajectory smoothing process (1/2)

(b)

(a) The unsmoothed trajectories of the shock tube test of gas dynamics

The trajectories used in above slides were smoothed by moving average for ease of viewing. This is
because unsmoothed trajectories are oscillatory as shown in Fig. (a). Figure (b) shows the density
distributions in the vicinity of the discontinuity at the maximum and minimum extrema of the trajectory as
shown in Fig. (a). From this figure, the reason of the oscillations of the trajectories is that the cell that has the
maximum density gradient is identical for several time steps. Since these oscillations are not relevant to the
discussion, we smoothed the trajectories using moving average for ease of viewing and avoiding confusion.
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Analysis
 Trajectory smoothing process (2/2)

The trajectories used in above slides were smoothed by moving average for ease of viewing. This is
because unsmoothed trajectories are oscillatory as shown in Fig. (a). Figure (b) shows the density
distributions in the vicinity of the discontinuity at the maximum and minimum extrema of the trajectory as
shown in Fig. (a). From this figure, the reason of the oscillations of the trajectories is that the cell that has the
maximum density gradient is identical for several time steps. Since these oscillations are not relevant to the
discussion, we smoothed the trajectories using moving average for ease of viewing and avoiding confusion.

(b) The density distributions of the shock tube test of gas dynamics which correspond
the local minimum and maximum shown in Fig. (a).
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