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1 Introduction
In recent years, the utilization of physics-informed neural networks (PINNs) [1], a physics-based machine-
learning method, has emerged as a powerful approach in the field of computational fluid dynamics (CFD)
owing to its capability and generality in solving non-linear partial differential equations [2, 3, 4]. Unlike
purely data-driven machine learning methods, PINNs integrate the training process of neural networks
with governing physics equations, facilitating the modeling of diverse simulations even when data is
limited. However, a significant limitation of many existing PINN formulations lies in their development
within the Eulerian framework, which falls short in addressing the challenges posed by free surface flows
and moving boundary problems inherent in fluid dynamics [5, 6].

The Neural Particle Method (NPM) stands as a notable advancement in Lagrange-based PINNs
tailored specifically for modeling free surface flows [7]. Unlike Eulerian methods, NPM exhibits the
capability to accurately describe flow surfaces without succumbing to issues such as particle splashing
commonly observed in other conventional particle-based methods like Smooth Particle Hydrodynam-
ics (SPH) [8, 9], Moving-particle semi-implicit methods (MPS) [10, 11], and Discrete Element methods
(DEM) [12]. The effectiveness of NPM has prompted numerous research endeavors aimed at enhancing
its functionalities and addressing existing challenges. However, NPM’s limitation to simulating inviscid
flow led to the introduction of the general Neural Particle Method (gNPM) by Bai et al. [13], which
extends its applicability to simulate viscous flow through adjustments in differentiation across the spa-
tial domain. Despite these advancements, Lagrange-based PINNs encounter challenges, particularly in
accurately delineating complex flow geometries due to distorted fluid particle patterns. To address this,
Shao et al. [14] proposed the Improved Neural Particle Method (INPM), aiming to rectify insufficient
particle distributions along boundaries. However, INPM remains confined to inviscid flow simulations,
failing to address a broader spectrum of fluid dynamics scenarios. Moreover, distorted particle patterns
compromise computational resolution in specific regions, thereby impacting result accuracy. In response,
Pai et al. [15] introduced an adaptive Neural Particle Method (NPM-A), integrating numerical techniques
such as interface tracking and adaptive particle refinement to ensure uniform particle patterns across
both interface and interior regions. Leveraging inference, a unique feature of machine learning modeling,
NPM-A offers flexibility in fluid particle reassignment without introducing additional numerical errors.
Consequently, NPM-A sustains regular particle patterns while enhancing its capacity to capture complex
fluid behaviors. Despite the competitive advantages of NPM-A, a notable drawback pertains to their
computational inefficiency compared to traditional numerical approaches. While accelerated methods
for deep learning have undergone significant development in both hardware and software realms [16],
their application to purely physics-driven machine learning approaches remains hindered by the absence
of accessible validation data.

Automatic differentiation (AD) stands out as a primary contributor to computational time con-
sumption in PINNs. This technique, distinct from conventional numerical approaches, facilitates the
computation of higher-order derivatives crucial for solving complex physical equations. Yet, the com-
putation of these derivatives poses challenges, particularly in large-scale simulations and training pro-
cesses of neural network frameworks. Recent advancements have proposed alternative strategies such as
CAN-PINNs [17], which substitute automatic differentiation with traditional numerical differentiation
techniques to reduce computational costs without sacrificing spatial resolution. Additionally, first-order
formulation techniques, as exemplified by FO-PINNs [18], aim to enhance the computational efficiency of
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standard PINNs by reformulating governing equations into a first-order framework. These innovations,
coupled with techniques like automatic mixed precision (AMP), further accelerate computational time
by utilizing lower precision numerical formats, thereby minimizing memory usage and computational
overhead.

Furthermore, the discrete time model (DTM) employed in NPM-A for time marching entails individ-
ual training for each time step, resulting in prolonged computational time and resources. To mitigate
these limitations, we introduce the transfer learning strategies [19] for the Neural Particle Method (TL-
NPM). By leveraging knowledge from related tasks, transfer learning significantly reduces training time
and resources, particularly in scenarios with limited data or high correlation between tasks [20, 21, 22].
For Lagrange-based PINNs, the gradual evolution of physical quantities and coordinates across time-steps
suggests a high degree of correlation, rendering transfer learning a feasible avenue for enhancing efficiency.
In present study, we investigate methods for enhancing the computational efficiency of NPM-A through
proposed transfer learning strategies (TL-NPM) with first-order formulation techniques (FO-NPM) to
accelerate the training process. We employ these techniques to simulate two distinct fluid problems: (i) a
rotating square fluid patch and (ii) wave breaking. Our results demonstrate significant improvements in
computational efficiency, achieving speed-ups ranging from 3.97 to 21.47 times for the rotational square
fluid patch case. Furthermore, even more substantial computational performance improvements up to
7.59 times for the wave breaking case without sacrificing solution accuracy.

The remainder of this paper is organized as follows. In Section 2, we first describe the model equations,
the adaptive Neural Particle Method (NPM-A), and the proposed TL-NPM, which integrate transfer
learning and the first-order Neural Particle Method (FO-NPM). The efficiency of TL-NPM is examined
through two numerical examples in Section 3. Finally, concluding remarks are discussed in Section 4.

2 Neural Particle Method and Transfer Learning

2.1 Model Equations
We consider a two-dimensional incompressible Newtonian fluid, for which the continuity equation reads

∂u

∂x
+

∂v

∂y
= 0 , (1)

and the momentum equations (Navier-Stokes equations) are given by

∂(ρu)

∂t
+

∂

∂x

(
ρu2 + p

)
+

∂

∂y
(ρuv) = ρgx + µ

(
∂2u

∂x2
+

∂2u

∂y2

)
,

∂(ρv)

∂t
+

∂

∂x
(ρuv) +

∂

∂y

(
ρv2 + p

)
= ρgy + µ

(
∂2v

∂x2
+

∂2v

∂y2

)
.

(2)

In (1) and (2), x and y denote the Cartesian coordinates, u and v represent the corresponding components
of velocity, respectively, t denotes time, ρ represents the fluid density, p is the pressure, µ means the
(dynamic) viscosity, and gx and gy are the gravitational acceleration in x- and y-direction, respectively.
Together with the continuity equation (1), the momentum equations (2) can be transferred to be in
Lagrangian form,

ax =
du

dt
= gx − 1

ρ

∂p

∂x
+

µ

ρ

(
∂2u

∂x2
+

∂2u

∂y2

)
,

ay =
dv

dt
= gy −

1

ρ

∂p

∂y
+

µ

ρ

(
∂2v

∂x2
+

∂2v

∂y2

)
,

(3)

which is the acceleration of the tracked particle used in the Neural Particle Methods (NPM), see [7, 13, 15].

2.2 Adaptive Neural Particle Method (NPM-A)
For a highly deforming flow body, the distribution of fluid particle may become sparsely scattered at
some portions, inducing a poor resolution locally. The adaptive neural particle method (NPM-A) is
therefore introduced in Pai et al. [15], in which the inference technique is employed to determine the
physical quantities of the added fluid particles at new positions. The flowchart of NPM-A is depicted
in Fig. 1. The complete process of a single time step is given in the light-gray-shaded region, where the
marker ⋆ indicates the starting point of training process. At the initial time level, the input data for
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Figure 1: Flowchart of NPM-A.

the neural networks (NN) are the positions of the fluid particles, e.g., (xn
i , y

n
i ) for particle i at time level

n. Although the corresponding velocities (un
i , v

n
i ) are not listed in the input data, they are needed in

evaluating the deviations through the associated loss functions. Through the forward propagation of the
assigned multilayer perceptron (MLP), the output data are the corresponding velocities and pressures for
the input positions at the new time level n+1, i.e., (ûn+1

i , v̂n+1
i , p̂n+1

i ). With the help of the Automatic
Differentiation (AD), the back-propagation process in NN-training, the spatial derivatives in the model
equations (1) and (3) can be obtained. The continuity equation (1) guarantees the incompressibility, and
the momentum equations in (3) yield the accelerations, i.e., (ax,i, ay,i) and they are given by

ax,i = gx − 1

ρ

∂

∂x
pn+1
i +

µ

ρ

(
∂2

∂x2
+

∂2

∂y2

)
un+1
i ,

ay,i = gy −
1

ρ

∂

∂y
pn+1
i +

µ

ρ

(
∂2

∂x2
+

∂2

∂y2

)
vn+1
i .

(4)

The NN-predicted velocity (ûn
i , v̂

n
i ) at the previous time level n can therefore be calculated by{

ûn
i = ûn+1

i − ax,i ∆t

v̂ni = v̂n+1
i − ay,i ∆t

, (5)

in which ∆t means the time interval. The loss functions consist of the model equations, and the associated
boundary conditions. The continuity equation (1) means the vanishing velocity gradient, makes sure the
incompressibility. The momentum equations turn to be the difference between the velocity (un

i , v
n
i ) at

tn and the NN-predicted velocity (ûn
i , v̂

n
i ) given in (5), where the magnitude of the differences should

vanish. At each single time step, the trained NN-model can directly predict the physical quantities for any
positions in the computational domain, known as inference. In the present study, we utilize the inference,
instead of interpolation, to determine the physical quantities of the rearranged particles, because they
are supposed to fulfill the model equations in the deep-learning process. Leveraging this advantage,
NPM-A can adaptively adjust the positions of computing particles to meet the assigned distribution
pattern, such as an even distribution or local refinement. The Adaptive Particle Refinement (APR) in
NPM-A is applied for both the interior region and interfaces. Through APR, the physical quantities
(ǔn+1

i , v̌n+1
i , p̌n+1

i ) at the rearranged positions (x̌n+1
i , y̌n+1

i ), are predicted by inference, which is trained
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with respect to the original positions (xn
i , y

n
i ). Then, we can update the new positions (x̌n+1

i , y̌n+1
i ) with{

x̌n+1
i = x̌n

i + ǔn+1
i ∆t

y̌n+1
i = y̌ni + v̌n+1

i ∆t
(6)

for time marching. The input data (xn
i , y

n
i ) is updated by the new positions (x̌n+1

i , y̌n+1
i ) and the

corresponding velocities (ǔn+1
i , v̌n+1

i ) for the next training process at next time step. By repeating the
proceeding process, the dynamical fluid simulation is achieved.

Following [1, 13, 15], a 2-stage fourth-order implicit Runge Kutta (IRK) method is utilized for higher
accuracy. That is, we have three predicted velocities at tn based on the physical quantities at three
time levels (tn+c1 , tn+c2 , tn+1), respectively, for each computational particle, where c1 = 1

2 −
√
3
6 and

c2 = 1
2 +

√
3
6 . Hence, the output of the NN-process reads(

ûn+c1 , ûn+c2 , ûn+1, v̂n+c1 , v̂n+c2 , v̂n+1, p̂n+c1 , p̂n+c2
)

and p̂n+1 = 1
2 (p̂

n+c1 + p̂n+c2) .

For details on the high-order approach, we refer readers to [15] or [1].

2.3 First-Order Formulation for Neural Particle Method (FO-NPM)
To enhance the efficiency of NPM, Gladstone et al., [18] suggested a reformulation of the model equations
into a type of first-order for the physics-informed neural networks (FO-PINNs). Here we refer this
method as the FO-NPM. In FO-NPM, the output of the neural networks is expanded from (û, v̂, p̂) to
(û, v̂, p̂, û,x, û,y, v̂,x, v̂,y), with û,x = ∂û

∂x , û,y = ∂û
∂y , v̂x = ∂v̂

∂x , and v̂,y = ∂v̂
∂y the first-order derivatives.

Hence, the momentum equations (3) are recast by

aFx =
du

dt
= gx − 1

ρ

∂p̂

∂x
+

µ

ρ

(
∂û,x

∂x
+

∂û,y

∂y

)
,

aFy =
dv

dt
= gy −

1

ρ

∂p̂

∂y
+

µ

ρ

(
∂v̂,x
∂x

+
∂v̂,y
∂y

)
.

(7)

Despite of the additional output of the first-order derivatives (û,x, û,y, v̂,x, v̂,y), the efficiency of FO-NPM
can be highly enhanced because the back-propagation steps for calculating the second-order derivatives
are reduced. FO-NPM can also integrate with the treatment of automatic mixed precision (AMP) [23]
to reduces the runtime and memory footprint by adjusting the datatype during the training process.
Although AMP is widely used in machine learning, one should notice that it can cause instability for
high-order differentiation in PINNs [18]. With the intrinsic first-order formulation, the FO-NPM can
benefit of further accelerating the training process by using the AMP. In addition, the FO-NPM may
substantially reduce memory requirements, thereby increasing the potential for large-scale simulations.

Figure 2: Schematic of the learning rate scheduler with time step progression, where the blue line denotes
the standard training method and the red-cross line represents the proposed transfer learning strategy.
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Table 1: Hyper parameters of the proposed transfer learning strategies.

NN
sizes Optimizer

Activation
function Epochs

Learning
rate

Learning rate
scheduler

Decay Decay
rate α steps nd

FT-40k 6 × 512 Adam SiLU 40, 000 1e-3 0.95 350

FT-80k 6 × 512 Adam SiLU 80, 000 1e-3 0.95 700

TL-NPM
(time step =1)

6 × 512 Adam SiLU 80, 000 1e-3 0.95 700

TL-NPM
(time step >1)

6 × 512 Adam SiLU n× 1, 000

(n = 5, 10, . . . , 20)
1e-5 n.a. n.a.

TL-ADA-NPM
(time step =1)

6 × 512 Adam adaptive
SiLU

80, 000 1e-3 0.95 700

TL-ADA-NPM
(time step >1)

6 × 512 Adam adaptive
SiLU

n× 1, 000

(n = 5, 10, . . . , 30)
1e-5 n.a. n.a.

2.4 Implementation of Transfer Learning
Taking advantage of the capability to accelerate the training process, the NPM-A with transfer learning
strategy, referred to as TL-NPM, is implemented based on the FO-NPM formulation. Without the
mechanism of learning transfer, the assigned training steps (epochs) at each time step are 80 k, which
is named "full-training" and indexed by "FT-NPM" in the present study. To evaluate the effectiveness
of the imposed transfer learning strategy, the concept of fine-tuning is employed. That is, at the first
time step (time step =1 in Fig. 2), the training steps (epochs) remains as in the full-training approach
(80 k), where the learning rate η reduces exponentially from 10−3 to 10−5 with the increasing training
steps, cf. Fig. 2. In the subsequent time steps, the NN-model trained at the previous time step is
reused, the total training steps reduce to the assigned n × 1, 000 epochs (n = 5, 10, . . . , or 30), and the
learning rate remains the asymptotic value 10−5, see the right panel of Fig. 2 and Table 1. Figure 2
illustrates the evolution of learning rate scheduler with time steps, where the blue line denotes the
standard full training method (referred to as FT-NPM), and the red-cross line represents TL-NPM.
Because the hyper-parameters are adjustable with abundant possibilities, we fix most of the parameters
to simplify the problem and focus on demonstrating the required number of epochs for fine-tuning, where
the parameter values used in the testing cases are collected and listed in Table 1.

Similar to [15], a multilayer perceptron (MLP) composed of 6 hidden layers with 512 neurons in each
layer is used, where the optimizer Adam [24] and the activation function SiLU [25] are adopted. As will
be detailed in Section 3.2, the activation function "adaptive SiLU" facilitates the improvement of training
convergence. At the initial stage (time step = 1), an exponential decay learning rate scheduler [26] is
utilized in both methods (FT-NPM and TL-NPM), viz.,

η = η0 × exp

(
(α− 1)

⌊
k

nd

⌋)
, (8)

where η is the current learning rate with η0 its initial value, α = 0.95 denotes the decay rate, nd stands
for the decay steps, and k represents the current number of epochs (cf. Table 1). In (8),

⌊
k
nd

⌋
stands

for the largest integer that is smaller than or equal to k/nd. That is, the learning rate will decay once
every nd training steps. Similar to [15], two types of full training strategies are employed, respectively
referred to as FT-40k and FT-80k, where, as listed in Table 1, FT-40k involves 40,000 epochs and 350
decay steps, and FT-80k consists of 80,000 epochs and 700 decay steps. Both FT-40k and FT-80k have
the same initial learning rate of 10−3 and a decay rate of 0.95. As indicated in [15], the training with
FT-80k shows better convergence. Hence, we choose FT-80k to ensure the convergence at the initial time
step for our proposed transfer learning strategies, as the following time steps training rely on the model
from the initial time step. For the subsequent time steps, FT-NPM will restart from a new NN-model,
maintaining the same learning rate strategy. For the method with transfer learning TL-NPM, the trained
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Figure 3: Initial configurations of the two testing examples. (a) The rotating square fluid patch; (b)
The wave breaking problem, where the total length of the channel is three times that of the initial water
column.

model continues fine-tuning with the tiny learning rate 10−5, which is close to the final learning rate of
the initial time step, as illustrated by the red-cross line in Figure 2. Here, the primary effect of TL-NPM
on acceleration is the reduction in the number of required epochs. The performances for various number
of fine-tuning epochs will be discussed in Section 3.

3 Numerical Investigation
Two numerical examples are examined in terms of efficiency, one involves a rotating square fluid patch
and the other concerns the wave breaking phenomenon. Their initial configurations are given in Fig. 3,
which are same as in [15]. For the fluid properties, in the testing case of rotating square fluid patch
the fluid is inviscid, while the wave breaking is simulated with the viscosity of water. Hence, their
derivatives for AD are of different orders, which means more back-propagation steps are needed for the
wave breaking problem due to the viscous drags. We first explore the feasibility of FO-NPM with the
first-order formulation (7). The transfer learning is then applied to FO-NPM, called TL-NPM. The
practice of fine-tuning with various hyper-parameters is made in the following numerical examples.

3.1 Rotating square fluid patch
The first testing case is a classical benchmark example for examining the performance of a Lagrangian
method. As shown in Fig. 3(a), a 2D square inviscid fluid patch, centered at (0, 0) with both initial
length and width L = 1.0 m, rotates at a constant angular speed ω0 = 10.0 s−1. The the fluid density
reads ρ0 = 1, 000 kg/m3 and no gravity is taken into account, i.e., (gx = gy = 0). Hence, the fluid patch
starts with the velocity {

u(t = 0) = +ω0 y

v(t = 0) = −ω0 x
. (9)

The initial fluid particles are uniformly assigned with dx = dy = 0.005 m, including 2,401 interior
particles and 200 boundary particles. For the time marching, a time interval of ∆t = 0.002 s is used.

Driven by the angular speed ω0, the square patch deforms in a spreading manner due to centripetal
acceleration. Since the flow body is assumed to be inviscid, the vertices of the four corners move in
straight lines and stretch with their initial velocities. Simultaneously, the fluid patch rotates, with
the four corners forming slim arms. That is, the vertices should be located on the four straight lines
and at the positions indicated by the cyan lines, as shown in Fig. 4. Hence, the performance of the
numerical approach can be evaluated by comparing the exact positions of the vertices of four corners.
The deviation ∆ℓ infers the distance between the theoretical position and the position in simulation. In
present study, the performance of the proposed TL-NPM are examined by the dimensionless deviation
∆ℓ/L at dimensionless time level tω0 = 4.0. To investigate the effectiveness between full training (FT)
and transfer leaning (TL), and the impacts of AMP and number of epochs, a campaign is designed. The
campaign consists of three groups. In the first group, we examine the accuracy and efficiency of the
full-training method with 40, 000 epochs (FT-40k), with 40, 000 epochs and automatic mixed precision
(FT-40k-AMP), with 80, 000 epochs (FT-80k), and with 80, 000 epochs and automatic mixed precision
(FT-80k-AMP). The effects of the transfer learning are explored with respect to various epochs in the
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second group, viz. 5, 000 epochs (TL-05k), 10, 000 epochs (TL-10k), 15, 000 epochs (TL-15k), and 20, 000
epochs (TL-20k). In the third group, the automatic mixed precision is employed together with the TL,
5, 000 epochs (TL-05k-AMP), 10, 000 epochs (TL-10k-AMP), 15, 000 epochs (TL-15k-AMP), and 20, 000
epochs (TL-20k-AMP) are used. The modeled results at t = 4.0/ω0 s are depicted in Figure 4, in
which the color scale represents the dimensionless pressure field p/(ρ0ω

2
0L

2) . In Fig. 4, the four corner
vertices should theoretically align with the black dashed-lines and intersect with the cyan lines. The
associated speed-up ratios, indicated within the brackets, are given in the corresponding panels, where
the magnitudes are in terms of the training strategy with 80,000 epochs (FT-80k), the longest elapsed
time. For the evolution of the rotating patch at various time levels, we refer the readers to [15].

Figure 4: Snapshots of the shapes and the corresponding pressure fields at time level t = 4.0/ω0 s, where
the results are modeled by (a) full training strategies (FT-NPM); (b) transfer learning strategies (TL-
NPM); and (c) transfer learning strategies with automatic mixed precision (TL-AMP-NPM), respectively.
In addition, the speed-up ratios, indicated within brackets, are based on the elapsed time of FT-80k.

Figure 5 visualizes the performance in terms of acceleration and accuracy with bar charts. The left
panel demonstrates the speed up effect, where the reference elapsed time given by FT-80k is indicated
by the cyan line. The dark blue and light blue bars in the right panel of Fig. 5 represent the average
deviation and the associated standard deviation of the four corner vertices at t = 4.0/ω0 s, respectively,
for evaluating the corresponding training strategies. Although FT-80k provides the highest accuracy, the
results from FT-40k are acceptably accurate and offer significantly greater efficiency. Hence, we take the
averaged deviation of FT-40k, depicted by the red line in Fig. 5, as the reference value for appraising the
performance of the proposed training strategies. As already elaborated, there are three groups to explore
the effectiveness of the proposed training strategies: the full training strategies (FT-NPM), the transfer
learning strategies (TL-NPM), and the transfer learning strategies with automatic mixed precision (TL-
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Figure 5: Speed-up ratios (left) and the corresponding accuracies (right) in modeling the rotating patch
problem. Panel (a) illustrates the results modeled by the full training strategies (FT-NPM, Group-I),
panel (b) represents the results modeled by the transfer learning strategies (TL-NPM, Group-II), and
panel (c) shows the results modeled by strategies of transfer learning with automatic mixed precision
(TL-AMP-NPM, Group-III).

AMP-NPM). The performances of the three groups are depicted in the right panel of Fig. 5. The detailed
information of elapsed time and deviation are listed in Table 2.

FT-NPM

Since the rotating patch is composed of an inviscid fluid and therefore given in first-order formulation
intrinsically, we can examine the influence of AMP without any additional effect caused by high order
derivatives. Panels in row (a) of Fig. 4 show the results modeled by full training strategies, referred to
as FT-NPM, with 40,000 epochs and 80,000 epochs at t = 4.0/ω0 s. For 40,000 epochs, an asymmetrical
pressure field at the center region was found either with AMP (FT-AMP-40k) or without AMP (FT-
40k). We can also notice the discrepancy in the corner vertices between the theoretical positions. For the
results with 80,000 epochs, the symmetry of the pressure field and the position deviations of the corner
vertices are both improved, demonstrating the benefits of increasing the number of epochs. As shown
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Table 2: Elapsed time and deviation in numerical examples with various training strategies. The em-
ployed GPU device is NVIDIA RTX A5000.

FO AMP ADA Elapsed time (min)
for one time step

Speed up Deviation

FT-40k ■ 18.4 1.98× 0.089

FT-40k ■ ■ 13.5 2.70× 0.083

FT-80k ■ 36.5 1.0 × 0.053

FT-80k ■ ■ 27.2 1.34× 0.042

Rotating square TL-05k ■ 2.3 15.87× 0.152

fluid patch TL-10k ■ 4.6 7.93× 0.109

( 2,602 particles ) TL-15k ■ 6.9 5.29× 0.090

TL-20k ■ 9.2 3.97× 0.078

TL-05k ■ ■ 1.7 21.47× 0.156

TL-10k ■ ■ 3.4 10.74× 0.105

TL-15k ■ ■ 5.1 7.16× 0.084

TL-20k ■ ■ 6.8 5.37× 0.059

FT-80k 208.8 1.0 × –
FT-80k ■ 115.2 1.82× 0.0189

FT-80k ■ ■ 70.4 2.97× 0.0234

TL-10k ■ 14.4 14.50× 0.030

Wave breaking TL-15k ■ 21.7 9.62× 0.0321

( 6,350 particles ) TL-10k ■ ■ 18.4 11.35× 0.0210

TL-15k ■ ■ 27.5 7.59× 0.0171

TL-20k ■ ■ 37.0 5.64× 0.0178

TL 25k ■ ■ 46.2 4.52× 0.0181

TL 30k ■ ■ 55.4 3.77× 0.0196

in Fig. 5(a), training with AMP may reduce the averaged deviations in both cases of FT-AMP-40k and
FT-AMP-80k. However, the use of AMP may lead to lower precision (cf. the light blue bars in the right
panel), which is suspected to be induced by the instability of mixed precision. In terms of computational
efficiency, training with AMP significantly reduces the run time, with a total elapsed time approximately
1.3 times faster compared to the standard training, i.e., FT-AMP-80k vs FT-80k, cf. Fig. 5(a). Hence,
training with AMP for model euqations with first-order derivatives is a feasible option.

TL-NPM

In the campaign with TL-NPM, fine-tuning with various epoch number is used to examine the effec-
tiveness of the proposed transfer learning strategies. The results of FT-NPM reveal that an increased
number of epochs may enhance the stability of convergence, improve the symmetry of pressure field, and
reduce the deviation of the trajectory of the corner vertices. The epoch number for fine-tuning processes
starts from 5,000 to 20,000 with an increment of 5,000. For each epoch number, the whole training
process is repeated for three times, indexed by run-I, run-II, and run-III in the right panel of Fig. 5, for
a concise illustration of the sensitivity by transfer learning. The panels of row (b) in Fig. 4 illustrate
the pressure fields of run-II with different fine-tuning epochs at t = 4.0/ω0 s. Comparing the results
between FT-40k and TL-NPM, the transfer learning strategies (TL-05k, TL-10k, TL-15k and TL-20k)
have improved the symmetry of the pressure field. It is also noted that larger fine-tuning epochs lead to
more accurate results. That is, the positions of the corner vertices gradually approach the corresponding
cross-points with the black dashed lines, inferring a positive correlation between the epoch number of
fine-tuning and the accuracy of the associated results. The corresponding position deviations of the
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corner vertices by the TL-NPMs are given in Fig. 5(b), where the average deviations become smaller in
general when more fine-tuning epochs are used. As the fine-tuning epochs increase to 15,000, the average
deviations become comparable to those modeled by FT-40k, of which the performance is taken as the
judgement criteria in the present study, see the red line in the right panel of Fig. 5. Besides, the TL-15k
enhanced the efficiency by about 5.3 times when compared to FT-40k, demonstrating the effectiveness
of the proposed TL-NPM. Nevertheless, TL-NPM exhibits a random characteristic with respect to the
position deviations (both for the averaged value and standard deviation) in the three runs (run-I, run-II,
and run-III). This finding implies a slight instability in the training process compared to the results
modeled by FT-NPM.

TL-AMP-NPM

Since the application of automatic mixed precision (AMP) can substantially reduces memory require-
ments [23], the efficiency and performance of fine-tuning with AMP was examined. As shown in the
left panel of Fig. 5, AMP has slightly improved the efficiency in the four cases of epoch number (TL-
AMP-05k, TL-AMP-10k, TL-AMP-15k and TL-AMP-20k). However, the position deviations depicted
in Figs. 4(c) (and 5(c) for the averaged ones) do not show remarkable improvement compared to those
of trained without AMP. The right panel of Fig. 5(c) reveals that, among the three runs, the average
position deviations modeled by TL-NPM-AMP follow a similar trend to those modeled by TL-NPM,
regardless of the number of fine-tuning epochs. Here, the random characteristics can also be observed in
the results modeled by TL-NPM-AMP. Regarding efficiency, the elapsed time of running TL-NPM-AMP
can be reduced by more than 1.3 times compared to running TL-NPM, while maintaining similar accu-
racy. Therefore, the proposed transfer learning strategies (with or without AMP) significantly highlight
the acceleration effect while ensuring satisfactory performance levels, using the results from FT-40k as
the reference criteria.

3.2 Wave breaking
The wave breaking problem is concerning a water column released by opening the gate suddenly, where a
thin water layer exists in the channel. Once the water column is released, the flow pushes the thin water
layer, forming a mushroom-shaped surge of waves. As the wave steepness increases, it becomes unstable
and breaks. The process from formation to breaking dynamically exhibits a complex flow surface. Hence,
we take the wave breaking problem as the second testing case to rigorously examine the proposed transfer
learning strategies. Figure 3(b) illustrates the initial configuration of wave breaking, which follows the
experiment setup of [27]. The initially stagnant water body has a depth of d0 = 0.15 m and a length of
x0 = 0.38 m, with a shallow ambient layer of depth d = 0.018 m. In the modeling process, the fluid is set
to have a density of ρ = 1,000 kg/m3 with a viscosity of µ = 0.001 Pa·s, and the time step ∆t = 0.005 s is
used for time marching. Additionally, because of the good agreement (in terms of the propagation of the
wave front) between the experimental images and the results modeled with the non-linear opening gate
opening speed [27, 15], we apply the same gate speed from [15] in the present wave breaking problem.
Similar to Section 3.1, three groups of various training strategies are arranged, (a) Group A: full training
strategies in first-order formulation (denoted by FO-NPM); (b) Group B: transfer learning strategies
in first-order formulation (denoted by TL-FO-NPM); and (c) Group C: transfer learning strategies in
first-order formulation with adaptive activation function (denoted by TL-FO-ADA-NPM).

In Figs. 6 and 7, the light-blue-shaded areas outlined by blue lines depict the results of wave breaking
modeled by FT-NPM with 80,000 epochs (referred to as FT-80k) at time levels t = 0.220, 0.280, and
0.345 s. The red dots in panels of row (a) represent the outlines of the wave in experiment in [27] at
approximately the same time levels, viz. t = 0.219, 0.281, and 0.343 s. In the present study, we use the
results of FT-80k as the baseline for evaluating the performances for the various training strategies in
modeling this wave breaking problem, including the first-order formulation (FO), transfer learning (TL),
adaptive mixed precision (AMP), and adaptive activation function (ADA). The speed-up ratios of the
various training strategies relative to the FT-80k strategy are given in the brackets of the right panels in
Figs. 6 and 7. In order to quantitatively assess the accuracy of different training strategies, the deviation
index suggested in [28] is employed, viz.

Λ area =
|AFT −AFT∩TS|+ |ATS −AFT∩TS|

|AFT∩TS|
, (10)

which represents the area deviation of the specific training strategy from FT-80k. In (10), AFT denotes
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Figure 6: Results of shape evolution modeled by methods of Group A at time levels t = 0.220, 0.280, and
0.345 s. (a) The red dots outline the flow body in experiments in [27], while the light-blue shaded areas
with blue outlines represent the results modeled by FT-80k. Panels (b) and (c) depict results modeled
by FT-FO-80k and FT-FO-AMP-80k, respectively, with light-red shaded areas and red outlines. The
speed-up ratio, shown in brackets, is calculated relative to the elapsed time of FT-80k.

the area modeled by FT-80k, ATS is the area modeled by target training strategy (referred to as TS),
and AFT∩TS indicates their intersection. In other words, Λarea is the ratio of the total area difference to
the area of intersection modeled by FT-80k and the target training strategy.

Figure 8 visualizes the enhanced efficiencies (performance of acceleration, given by the speed-up ratio
with respect to FT-80k) and the corresponding accuracies of the target training strategies. The speed-
up ratios, calculated with respect to FT-80k, are indicated by the sky-blue line and depicted in the left
section of Fig. 8. The right section of Fig. 8 illustrates the area deviations by light blue bars at three
time levels, viz. t = 0.220, 0.280, and 0.345 s, and indexed by T1, T2, and T3, respectively. The dark
blue bars indicate the associated average area deviations across the three time levels. In the right section
of Fig. 8, the area deviation of FT-80k serves as the reference model and is marked by "norm". The
efficiency and performance assessment are investigated in terms of the three assigned groups, i.e., FT-
NPM, TL-FO-NPM, and TL-FO-ADA-NPM, respectively. The detailed information about the elapsed
time and average area deviation are collected and listed in Table 2.

FT-NPM

In addition to the results of full training strategy (FT-80k) in Fig. 6(a) We illustrate the results of wave
breaking problem trained by FT-FO-NPM and FT-FO-AMP-NPM in panels (b) and (c), respectively,
where the flow body is depicted by the light-red shaded area with red outlines. The shaded areas
are colored with transparency to clearly present the discrepancy with the shape modeled by FT-80k.
Examining the results at time level t = 0.220 s in Fig. 6(b)(c), no significant discrepancy between FT-
FO-NPM and FT-FO-AMP-NPM is identified, with the surge wave developing at approximately the
same position. When time marches to t = 0.280 and 0.345 s, the mushroom-jet develops and the front
edge tends to touch down the water level. Although the surges in the three strategies are located at
approximately the same position, it is noted that the introduction of the first-order formulation (FO) leads
to an earlier bending of the front edge (either by FT-FO-NPM or FT-FO-AMP-NPM). At t = 0.345 s, the
front edge modeled by FT-FO-AMP-NPM has already touched the water level. On the other hand, the
first-order formulation (FO) has postponed the development of the rear edge of the mushroom jet, where
the rear edge did not appear in both results by FT-FO-NPM and FT-FO-AMP-NPM until t = 0.345 s.
In addition, as shown in Fig. 8, the area deviations of FT-FO-AMP-NPM is more significant than those
of FT-FO-NPM, and the gap increases as time marches. In terms of the runtime, both FO and AMP can
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Figure 7: Results of shape evolution in modeling the wave breaking at time levels t = 0.220, 0.280, and
0.345 s. The red dots outline the flow body in experiments in [27], while the light-blue shaded areas with
blue outlines are the results modeled by FT-80k. The light-green and light-yellow shaded areas illustrate
the modeled by flow body in TL-FO-NPMs and TL-FO-ADA-NPMs, respectively. The speed-up ratio,
with respect to the runtime by FT-80k, is given in brackets.

enhance the efficiency. Training with FT-FO-NPM can significantly accelerate the training process by
about 2 times compared to FT-80k, while the acceleration can be up to 3 times for FT-FO-AMP-NPM.
These findings reveal that, for equations consisting of second-order derivatives, the fist-order formulation
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Figure 8: Performances of acceleration and accuracy in wave breaking with different training strategies.
The left side and right side respectively present the speed-up effect and the deviation. On the right side,
the light blue in gradient bar denotes the area deviation at the three time levels, while the dark blue bar
represents the average area deviation across these time level. The sky-blue line on the left side serves as
the baseline for FT-80k, and the red line on the right side is based on the average deviation of TL-15k.
Panel (a) illustrates the full training strategies (FT-NPM, Group A), panel (b) represents the transfer
learning strategies reformulated in first-order type (TL-FO-NPM, Group B), and panel (c) shows transfer
learning strategies reformulated in first-order type with automatic mixed precision (TL-FO-ADA-NPM,
Group C).

(FO-NPM) may serve as an alternative option for obtaining a rough result within limited computational
resources and time constraints.

TL-FO-NPM

As the feasibility of FO-NPM has been confirmed in the previous paragraph, the transfer learning strate-
gies, referred to as TL-FO-NPM, are examined in the same way, with 10, 000 and 15, 000 fine-tuning
epochs (indexed as TL-FO-10k and TL-FO-15k, respectively) taken into account. The results of TL-
FO-NPM at three time levels (t = 0.220, 0.280, and 0.345 s) are illustrated in panels (b) and (c) of
Fig. 7 for TL-FO-10k and TL-FO-15k, respectively. The flow bodies are depicted by the light-green
shaded area with green outlines, using a transparent illustration is used for ease of comparison with the
results trained by FT-80k. However, it seems that the transfer learning strategy cannot improve the
accuracy in this wave breaking problem, although efficiency has been significantly enhanced (cf. the
right section of Fig. 8). That is, with both 10, 000 and 15, 000 fine-tuning epochs, the shapes of the
flow body modeled by TL-FO-NPM exhibit substantial discrepancies to those trained by FT-80k, failing
to precisely capture the physical characteristics of wave breaking. This discrepancy is suspected to be
caused by insufficient convergence in the training process; therefore, the adaptive activation function
proposed in [29] is therefore adopted.

TL-FO-ADA-NPM

To enhance the training convergence in TL-FO-NPM, we employ an adaptive activation function [29]
into the transfer learning strategy, referred to as TL-FO-ADA-NPM. That is, trainable parameters are
introduced in the activation function, and their values are adjusted based on the current training status.
In TL-FO-ADA-NPM, the adaptive activation function is used for both the initial time step and the
subsequent time steps, as the trained model is sequentially reused. As shown in panels from row (d) to
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row (h) in Fig. 7, the transparent light-yellow shaded areas represent the results modeled by various fine-
tuning epochs at the three time levels. At t = 0.220 s, more fine-tuning epochs increases the sharpness the
front and rear edges of the mushroom jet. It is also noted that, as shown in Fig. 8, the use of more fine-
tuning epochs does not essure better convergence in terms of area deviation, whereas the results trained
by TL-FO-ADA-15k show the best agreement with FT-80k. At t = 0.280 s, fine-tuning with more than
15,000 epochs can precisely depict the rear edge of the mushroom, where the results trained by TL-FO-
ADA 25k exhibit the best agreement with those by FT-80k. Similar to the results by TL-FO-NPM, the
first-order formulation (FO) causes the earlier bending of the front edge. At t = 0.345 s, fine-tuning
from 15,000 to 25,000 epochs give the similar performance in terms of area deviation. However, the front
edge of the mushroom jet has touched the water level when the epoch number exceeds 20,000. This
early touchdown is inconsistent with the experiment image in [27], and also yields larger area deviations
with respect to the results trained by FT-80k. Consequently, the results trained by TL-FO-ADA-15k
at this time level is supposed to be in a better agreement with the propagation of the water bore. In
terms of the average area deviation across the three time levels, it is interesting that TL-FO-ADA-15k
yields the best performance, rather than models with a higher number of fine-tuning epochs. Although
it seems reminiscent of overfitting in machine learning, further evidence and validation are necessary to
support this assertion. Regarding the runtime acceleration, TL-NPM-ADA can significantly reduce the
elapsed time due to efficient computation for terms with second-order derivatives. The elapsed time of
TL-FO-ADA-15k speeds up by over 7 times compared to FT-80k, demonstrating the high efficiency of
TL-NPM-ADA. Therefore, the TL-NPM-ADA strategy showcases its ability to enhance efficiency while
preserving acceptable accuracy for equations with second order derivatives.

4 Concluding remarks
In this study, we introduce transfer learning strategies for the Neural Particle Method (TL-NPM), a
common technique in machine learning for accelerating training tasks by utilizing knowledge acquired
from similar tasks. As the coordinates and physical parameters in NPM evolve over time, we employ
the trained model from the initial time step to fine-tune the subsequent steps, a fundamental principle
of transfer learning. By fine-tuning the model with several epochs, TL-NPM remarkably accelerates the
training process while effectively capturing the evolving physical properties. Leveraging the first-order
formulation of equations (FO-NPM) [18], TL-NPM is well-suited for implementing automatic mixed
precision (AMP) to enhance training efficiency. Moreover, training with FO-NPM reduces the number
of back-propagations, resulting in decreased memory footprint requirements and addressing hardware
limitations for large-scale simulations. The proposed transfer learning strategies offer a promising solution
for NPM to overcome the challenges of high computational resource demands and long runtime.

The performance of TL-NPM is first examined using the benchmark problem of a rotating square fluid
patch, where the model equations are intrinsically formulated in first order due to the inviscid flow. The
results indicate that increasing the number of fine-tuning epochs may enhance the accuracy, as evaluated
by the average deviation of the four corner vertices. Taking the accuracy of the results trained with 40,000
epochs (FT-40k) as the norm, fine-tuning with more than 10,000 epochs can deliver the comparable
performance. In terms of training efficiency, TL-NPM significantly accelerates the elapsed time. TL-
NPM with 10,000 epochs (TL-NPM-10k) speeds up the training process almost 8 times compared to
standard training with 80,000 epochs (FT-80k). Additionally, fine-tuning with AMP (TL-AMP-NPM)
further enhances efficiency, resulting in a speed-up effect of over 10 times for TL-AMP 10k. Consequently,
acceleration with AMP is approximately 1.3 times faster than TL-NPM, while maintaining the same level
of accuracy. However, both TL-NPM and TL-AMP-NPM lead to higher standard deviations compared
with FT-NPM, indicating a relatively unstable convergence in the training process. Despite this slight
instability, the proposed transfer learning strategies offer remarkable acceleration without sacrificing
accuracy, demonstrating their promising feasibility.

The capability of TL-NPM in describing complex flow behaviors is examined and demonstrated using
the wave breaking problem. Since second-order derivatives appear in the model equations, we recast the
model equations using the first-order (FO-NPM) formulation to enhance efficiency. Training with FO-
NPM can mimic the shape modeled by standard full training with 80,000 epochs (FT-80k) and speed
up the training process by 2 times, while training with FO-AMP-NPM leads to an early bending of the
front edge, causing it to touch down to the water level. However, it is found that TL-NPM alone cannot
precisely capture the phenomenon of wave breaking without additional treatment. With the integration
of an adaptive activation function [29], the performance can be significantly improved. The shape of
the rear edge of the mushroom jet becomes sharper with increasing fine-tuning epochs, indicating a
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better performance of capturing the complex flow behavior. However, with TL-FO-ADA-NPM, higher
fine-tuning epochs lead to an early bending and faster propagation of the front, which is inconsistent
with the experimental results in [27]. As a result, these findings indicate that fine-tuning with 15,000
epochs (TL-FO-ADA-15k) presents the best agreement with FT-80k, and the efficiency is enhanced by
up to 7.59 times, see Table 2.

In the present work, the proposed transfer learning strategies for NPM have demonstrated the capa-
bility to accelerate training processes while effectively describing various types of flow behaviors. Despite
the performance of TL-NPM not being entirely comparable to FT-NPM due to the instability of conver-
gence and the loss of some physical details, its practicality should not be underestimated, particularly
for large scale applications. We demonstrate the feasibility of accelerating NPM through fine-tuning,
showcasing the potential of basic transfer learning. Fine-tuning with 15,000 epochs has proven to be
adequate strategy in the two numerical examples. However, further investigations on related hyper-
parameter and their associated calibrations are still needed, such as exploring the impacts of the number
for fluid particles, or the effectiveness when model equations with terms of higher-order derivatives. The
successful integration of transfer learning strategies in NPM marks a significant advancement in ad-
dressing computational efficiency. Further enhancing accuracy requires exploration of advanced transfer
learning techniques, which we are currently working on and will report in due time.
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