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Abstract: The distance from a grid point to the closest wall surface, wall distance, is a funda-
mental quantity in turbulence modeling. Efficiency of wall-distance calculations has become more
critical as the size of computational grids has significantly increased in recent years. This paper
reports on an initial implementation of a new search-based wall-distance method that is suitable
for general unstructured computational fluid dynamics (CFD) grids and tailored for requirements
specific for turbulence modeling. The method uses a two-step approach to calculate the wall dis-
tance. In the first step, the wall distance is approximated for each grid point as the minimum
distance from this point to a vertex of a triangular face at the wall. The point-to-vertex distance
calculation is relatively inexpensive but may lead to a significant error in the wall-distance approx-
imation, especially for grid points near the wall. In the second step, for grid points located within
a predefined distance (threshold) from the wall, the wall distance is computed as the minimum
distance to wall faces. As a result, the wall distance is exact for all grid points within the thresh-
old. This two-step approach reduces the computational cost, yet achieves high and controllable
accuracy in the evaluation of the wall distance. Algorithmic enhancements are presented to im-
prove the efficiency of wall-distance computations. A comprehensive assessment of the new method
is reported for large-scale unstructured CFD grids generated for the Fifth AIAA CFD High-Lift
Prediction Workshop. The performance of the new wall-distance method compares favorably with
the performance of two established methods implemented in high-performance CFD codes.

Keywords: Wall Distance, High Performance Computing, Computational Fluid Dynamics,
Turbulence Modeling.

1 Introduction
The wall distance is the minimum distance from a point to a wall surface, and it is a fundamental quantity
in turbulence modeling. In computational fluid dynamics (CFD), unstructured grids are often used for
the simulation of turbulent flows in the presence of complex geometries. For such simulations, the wall
is typically tessellated with triangular elements (faces). The wall distance is required for points of a
three-dimensional (3D) unstructured grid generated on a computational domain of interest. Efficiency of
wall-distance calculations has become more critical as the size of computational grids used for simulating
turbulent flows has significantly increased in recent years.

The topic of computing the minimum distance from a query point to a surface has been studied
extensively in the literature for applications in many areas [1, 2, 3, 4]. The most efficient algorithms are
tuned to application-specific assumptions and requirements. For example, in computer graphics, it is
often assumed that accuracy at all query points is equally important, that the number of query points is
small in comparison to the number of surface faces, and that surface faces are isotropic triangles whose
size is determined by the surface curvature. Scalability is achieved by careful balancing of the surface
data between different partitions.

Wall-distance computations for turbulent flows also have specific features and requirements. In a
typical CFD grid, there are many more query points than wall faces. In turbulence-model equations, the
wall distance often appears in the denominator of a source term. Therefore, grid points located near the
wall require much higher wall-distance accuracy than grid points that are far from the wall. In distinction
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from computer-graphics applications, the wall tessellation for CFD applications can be highly anisotropic
and is not exclusively governed by curvature and geometry features. The size, shape, and distribution
of wall faces reflects expectations for accurate flow representation and may not correlate with the wall
curvature. For example, in anticipation of shocks, multiphase flows, or contact discontinuities, small,
highly anisotropic faces may appear even on flat walls.

The wall distance is an auxiliary computation for simulating turbulent flows and is expected to take
a small fraction of the simulation time. However, efficient wall-distance computations in a highly parallel
environment are challenging. Typically, all grid points must have the wall distance calculated before
starting flow simulations. For flow simulations on a stationary grid, it is a one-time computation usually
conducted at the preprocessing stage. For unsteady flows on dynamic, deforming grids, the wall distance
may need to be updated at each time step. For scalable computations, most modern CFD solvers rely on a
domain-decomposition approach for coarse-grained parallelism where a Message Passing Interface (MPI)
implementation of the Message Passing Standard is used for data communication. In this paradigm,
each grid partition is assigned to an MPI rank. In typical CFD computations, grid partitioning is done
to optimize performance of the flow solver. There is no expectation of the load being balanced for
wall-distance computations. For parallel efficiency, memory management is also critical. In a CFD grid,
one can expect hundreds of millions of grid points and millions of wall faces. CFD solvers that have
been developed for stationary-grid applications either store a copy of the wall grid on each rank or load
portions of the wall grid on each rank one at a time. These approaches are not scalable and not suitable
for modern computer architectures using Graphics-Processing-Unit (GPU) accelerators.

In recognition of the wall-distance challenges encountered in modern CFD simulations, there is a
renewed interest in developing wall-distance methods suitable for high-performance CFD computing.
Ref. [5] gives a concise overview of popular approaches used in CFD codes today and suggests its own
method. The approaches are classified into three groups:

• Search algorithms [6, 7, 8, 9]

• Solutions of partial differential equation (PDE) [10, 11, 12]

• Domain painting [13, 14, 15]

A search algorithm typically considers one query point at a time and uses a nearest-neighbor search
to find the distance to the wall. An exhaustive nearest-neighbor search, i.e., a search that, for each
query point, computes the distances to all wall faces, is prohibitively expensive. A more efficient nearest-
neighbor algorithm usually constructs a bounding volume hierarchy (BVH) [16, 17] of wall faces. BVH
is a tree structure in which each leaf node is a wall face wrapped in a bounding volume. The faces
are then recursively grouped in progressively expanding sets that are enclosed within bigger bounding
volumes. Eventually, the entire tree structure is enclosed within a single bounding volume. Once a BVH
is constructed, it greatly expedites the search by quickly eliminating portions of the wall that do not help
determining the minimum distance for a given query point. Various types of bounding volumes have
been proposed and tested. The choice of bounding volume is a trade-off between simplicity and fitting
tightness. On one hand, a simple bounding volume enables a fast distance computation from a query point
to the bounding volume. On the other hand, tight bounding volumes are expected to eliminate larger
portions of the wall. Commonly used bounding volumes include axis-aligned bounding boxes [18, 19],
bounding spheres [20, 21, 22], oriented bounding boxes [23], and discrete orientation polytopes [24]. A
BVH search is efficient for identifying the distance from a query point to a set of discrete points, e.g.,
vertices of wall faces. However, this distance may not be the exact wall distance. The latter requires
computing distance to wall faces. Computing the point-to-face distance is significantly more expensive
than computing the point-to-vertex distance. With BVH, point-to-face wall-distance computations are
still relatively efficient for query points that are near the wall. For points that are far from the wall,
there may be many wall faces at a similar distance from the query point, resulting in smaller portions of
the wall eliminated from the BVH search. A compute rank containing many query points that are far
from the wall may require significantly more computations than a rank that has most of its query points
near the wall.

An alternative is a PDE-based approach. The wall distance can be considered as the time taken
by a unit-speed wave front emanating from the wall to reach a given query point. A PDE describing
wave propagation can be used for computing the wall distance. Such a PDE can be discretized and
solved using standard methods. PDE solvers are scalable; however, the accuracy of PDE solutions is
limited by the discretization error and iterative convergence. The exact wall distance can be achieved
only in the limit of grid refinement and zero residuals. Thus, the wall-distance computation may require
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generation of auxiliary grids. The accuracy and iterative convergence of PDE solutions deteriorate near
sharp geometrical features where wall-distance accuracy is most important for turbulence modeling.

Painting methods "color" parts of the computational domain that are closest to particular primi-
tive surface elements (faces, edges, vertices) of the wall tessellation. The painting can be topological,
based on grid connectivity, or grid independent, based on Voronoi diagrams. Topological painting is
typically implemented as an advancing front and can be perceived as a topological equivalent of the
wave-propagation approach. In the presence of non-uniform grids and highly varying cell sizes, the wall
distance can accumulate errors. Because of their sequential propagation nature, advancing-front methods
are generally not scalable. Grid-independent painting uses Voronoi diagrams. Although Voronoi dia-
grams precisely encode the proximity to a primitive surface element, the construction/search of Voronoi
diagrams is computationally intensive.

The method proposed in Ref. [5] combines characteristics of search-based and PDE-based approaches.
It computes the wall distance for individual grid points, uses face bounding boxes (voxelized surface),
and simulates wave propagation (expanding voxelized spheres). The wave propagation is performed on
an auxiliary Cartesian grid. Generation of an additional grid for computing the wall distance appears to
be a serious complication for a wall-distance algorithm intended for applications on general unstructured
grids.

In summary, search-based approaches can provide the true value of the wall distance, but may be
inefficient in treating grid points distant from the wall. PDE-based approaches are scalable, but may
require generation of auxiliary grids and may lose accuracy in places that are important for turbulence
modeling. Painting methods are not scalable and may not be sufficiently accurate or efficient.

The method proposed in this paper is a search algorithm that targets simulations of turbulent flows
on unstructured grids and is tailored for specific turbulence-modeling requirements. In particular, the
method uses the same partitions of the flow solver, limits searches on each rank to the wall data (vertices
and faces) that have a chance to be the closest ones for a grid point on the rank, and applies different
wall-distance computations for points that are near and far from the wall. A version of the method
has been implemented in FUN3D [25], a large-scale, unstructured-grid CFD solver developed at NASA
Langley Research Center (LaRC). The implementation of the new wall-distance method is a work in
progress. In the current version, identification of the wall data that needs to be searched on each rank
occurs after the entire wall data have been gathered at the rank. In the final version, only the required
wall data will be gathered on each rank. Even in the current version, performance of the new method
has been compared with the performance of established wall-distance methods [26, 27] and found to
be superior when applied to unstructured, mixed-element, highly anisotropic grids generated for solving
the Reynolds-averaged Navier-Stokes (RANS) equations for the Fifth AIAA CFD High-Lift Prediction
Workshop (HLPW5) [28].

The material in this paper is organized as follows. Section 2 describes the configurations, flows, and
grids used in this paper for the illustration and assessment of wall-distance methods. A brief description
of the reference wall-distance methods is provided in Section 3. Section 4 presents details of the new
method. Section 5 reports on numerical tests assessing the performance and accuracy of the new method.
A summary and future plans are presented in Section 6.

2 Configurations, Flow Conditions, and Grids
The High-Lift Common Research Model (CRM-HL) [29] is an open-source, publicly-available commercial
transport aircraft geometry in a high-lift configuration that is used for CFD validation within a broad
international community and studied in HLPW5 [28]. The reference characteristics of the full-scale model
are shown in Table 1. Specifically, configurations 2.1 and 2.4 (see Fig. 1) are considered in this paper.
Configuration 2.1 is a wing-body-tail configuration with horizontal and vertical stabilizers but without
high-lift devices. Configuration 2.4 is the same configuration with the addition of slats, flaps, and a
nacelle/pylon.

The method proposed in the current paper provides the exact wall distance for all points that are close
to the wall. The user can specify the distance (threshold) from the wall, within which the wall distance
is computed to wall faces. It is expected that the domain bounded by threshold includes the attached
boundary layer. The thickness of the boundary layer is a function of the flow Reynolds number, the extent
of the geometry, and any separation-related concerns. Flows considered for configurations 2.1 and 2.4 of
HLPW5 have Reynolds numbers based on the mean aerodynamic chord (MAC), ReMAC = 5.4×106 and
ReMAC = 5.9× 106, respectively. For an attached flat-plate turbulent boundary layer, the thickness, τ ,
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Table 1: Reference quantities of CRM-HL

Mean aerodynamic chord 275.8 inches
Semi-span model reference area 297,360.0 in2

Fuselage extent 2533.43205 inches
x moment center 1325.9 inches
y moment center 0.0 inches
z moment center 177.95 inches

(a) Configuration 2.1. (b) Configuration 2.4.

Figure 1: HLPW5 configurations.

is estimated [30] as

τ ≈ 0.37
L

Re
1
5

L

, (1)

where L is the characteristic length. Given the Reynolds numbers and the reference parameters listed
in Table 1, the estimates of the boundary-layer thickness at the aft of the fuselage are 27.1 inches and
26.6 inches for configurations 2.1 and 2.4, respectively. These are rough estimates that assume a zero-
pressure-gradient, self-similar, turbulent boundary layer. In most wall-distance computations presented
in this paper, threshold is twice the Eq. 1 estimate, i.e., threshold = 54.2 inches is used for configuration
2.1, and threshold = 53.2 inches is used for configuration 2.4.

The unstructured, mixed-element grids used in this paper have been generated for HLPW5 using the
Heldenmesh grid-generation tool developed and supported by the Helden Aerospace Corporation [31].
The wall surface is tessellated into triangular faces. The grid unit is inches. Tables 2 and 3 provide
statistics for grid families generated for configurations 2.1 and 2.4, respectively. Grid names follow the
HLPW5 website convention [28].

Table 2: Statistics of grids generated for configuration 2.1

Grid Grid points Wall vertices Wall faces
(millions) (millions) (millions)

C 1.482 0.062 0.123
M 3.869 0.127 0.253
F 24.051 0.468 0.936
G 53.848 0.816 1.630
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Table 3: Statistics of grids generated for configuration 2.4

Grid Grid points Wall vertices Wall faces
(millions) (millions) (millions)

C 6.015 0.270 0.540
M 14.727 0.538 1.075
F 81.550 1.852 3.703
G 178.386 3.187 6.374

3 Reference Wall-Distance Methods
This section provides an overview of two established wall-distance methods that serve as references to
assess the performance and accuracy of the new method. Both methods use a BVH based on a binary
tree. The legacy method [26] in FUN3D has been used for a wide variety of applications. The second
method is the wall-distance method implemented in NASA’s mesh-adaptation tool, refine [27].

3.1 Legacy FUN3D method
The first reference method is described in Ref. [26]. This method has been extensively and successfully
used in FUN3D RANS simulations for more than 20 years. The method calculates the wall distance for
a grid point by locating the closest wall vertex and then examining the wall faces attached to the vertex.
Let us consider the task of computing the wall distance for NF grid points to a wall that contains NS

vertices. Axis-aligned bounding boxes are constructed to enclose the wall vertices. The method starts
with a large bounding box containing all wall vertices and generates a binary tree of boxes by recursively
bisecting each box in the direction of its longest side. The dividing plane is chosen to have half of
the wall vertices lie on each side. This bisection stops (a box becomes a tree leaf) when the box has√
NS or fewer wall vertices. For each grid point, the leaf boxes are sorted in the ascending order of the

minimum distance to the grid point. The leaf boxes are visited in the order starting from the closest
one. The distance from the grid point is computed to all wall vertices contained in the leaf box. The
minimum point-to-vertex distance and the closest wall vertex are retained. If the minimum distance to
the next leaf box is greater than the currently identified minimum point-to-vertex distance, the search
stops because the closest wall vertex has been found. Once the closest wall vertex has been found, the
distances from the grid point to the wall faces that share the closest wall vertex are calculated. The
minimum point-to-face distance is set as the wall distance for the grid point. Assuming that the number
of wall faces sharing a vertex is bounded (this assumption excludes grids with a polar singularity), the
computational cost of this algorithm is O(NF

√
NS).

The legacy method is relatively efficient, but is known to miscalculate the actual minimal distance
for some pathological cases. For example, Fig. 2 shows the closest face, which is not attached to the
closest wall vertex. In practice, the method works for a wide range of grids and geometries and has been
extensively used in simulations of turbulent flows.

Figure 2: Minimum wall distance achieved at face not attached to closest vertex.
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3.2 Wall Distance in refine
The second reference wall-distance method is the one implemented in the NASA mesh-adaptation tool
refine [27]. This method computes the exact wall distance for all grid points and is used by FUN3D to
compute the wall distance on adapted grids. The method uses a binary tree that defines a parent-child
relation between wall faces [32]. Each node of the tree contains a face and its bounding sphere. The
node also holds a radius of another concentric sphere that encloses faces of all its descendant nodes. In
construction of the binary tree, faces are inserted in a predefined order. When a new face is inserted, the
face starts from the root node and descends through the generations of tree nodes. When the face visits
a node, the radius of the bounding sphere of the node is updated to include the face. If the node has
less than two children, the face is assigned to a new child of the node. If the node has two children, then
the face descends to the child node that is closer to the center of the face bounding sphere. After the
binary tree has been completed, the wall distance is computed for each grid point. The point recursively
traverses through the tree and measures the distance to the face bounding sphere. If the distance is less
than the current wall distance, the distance from the point to the face is computed. The wall distance is
updated as needed. Then the distance to its descendant bounding sphere is checked. If the distance is
greater than the current wall distance, all its descendants are excluded from the search. Otherwise, the
grid point proceeds to a next-generation node. At the end of this recursive tree traverse, the grid point
has its exact wall distance. Note that the efficiency of this method depends on the ordering in which
faces are introduced to the binary tree. A natural order based on spatial or topological proximity is not
beneficial for the tree balance. In the refine wall-distance computations reported in this paper, a random
permutation of faces is used. One can also use a self-balancing tree [33] to improve the tree balance.

4 New method
In a preprocessing stage, all the grid data including the wall data are loaded and partitioned between
ranks. Each rank owns some grid points and possibly some wall faces. The number of grid points owned
by different ranks is well balanced. The wall data is not balanced; some ranks may have many wall faces,
while other ranks may have none. The method is expected to provide an estimate of the wall distance
for all grid points. The main features of the new method are the following.

• This is a search-based method. Wall-distance computations are independently conducted for each
grid point on a rank.

• Wall vertices and wall faces are searched separately. Each rank searches only wall vertices and wall
faces that have a chance to be the closest one to a grid point on the rank.

• For all grid points, the initial wall-distance approximation is computed to wall vertices.

• For grid points within threshold from the wall, the wall distance is computed to wall faces.

• A nonzero wall-distance relative-error tolerance can be defined to speed up computations.

In the description of the new method, the following terminology is used. A bounding box, or box for brevity,
is a an anisotropic axis-aligned cuboid that tightly encloses a subspace or a group of wall vertices or
wall faces. Bounding boxes can overlap or leave uncovered gaps in the domain. Bounding boxes are
usually organized in a tree structure. A voxel is also an anisotropic axis-aligned cuboid; the term is
used to represent a unit volume in a regular partition of a 3D subdomain. A voxel partition covers the
entire subdomain without overlap and can be organized as a 3D matrix, in which each individual voxel
occupies a known space and can be referenced either by the i, j, k index or by a corresponding single-
integer index. Each voxel also has an individual bounding box that may have a different size than the
voxel itself and serves to represent tight bounds of vertices or faces registered with the voxel. Voxels of
different partitions can create an octree with parent-child relations, in which a parent voxel of a "coarse"
partition relates to the eight "fine"-partition child voxels that occupy the same space.

In the current implementation, the wall-distance method performs the following four major steps on
each rank.

1. Collecting the global wall data.

2. Selecting the wall data necessary to compute the wall distance for grid points on the rank.

3. Computing the point-to-vertex wall distance for the grid points on the rank.
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4. Computing the point-to-face wall distance for the grid points that are closer to the wall than
threshold.

Details of the steps are described in Sections 4.1-4.4.

4.1 Collecting Global Data
Prior to this step, the grid points and the wall data are distributed between ranks. At this step, the wall
data needed for computing the wall distance are gathered on each rank. In the current implementation,
the entire global wall data are gathered on each rank. This approach is not scalable. In the final version
of the new method, each rank will only collect the wall data necessary for computing the wall distance
on the rank. The following steps are currently performed on each rank.

• The indices of the grid points located at the wall (wall vertices) are collected.

• The indices are sorted to a list containing unique vertices.

• The coordinates of these vertices are collected.

• The wall face indices are collected and linked to the indices of the wall vertices.

• If the amount of wall data is too large to upload on each rank, the wall data are divided into
chunks. Chunks are gathered in turn. Each rank computes and updates the wall distance for each
chunk. Some faces of a chunk may contain vertices from other chunks. Therefore, coordinates of
face vertices are gathered after collection of each chunk.

For the computations reported in this paper, each rank holds the entire wall data.
After collecting the wall data, each rank computes a bounding box for each wall face and determines

the global largest face lengths in the three coordinate directions. Then, two global bounding boxes are
computed. The first box encloses the entire wall surface. The second global box is the first box with the
edges extended by threshold in the axis directions.

An octree of voxels is constructed for selecting wall vertices that need to be searched. The first
global box that tightly bounds wall vertices serves as the octree root node. All branches of the octree
have the same depth (the number of levels). Voxels at each octree level represent a partition of the
box. In creating the next octree level, voxels of the current level are partitioned into eight voxels. At
level m, there are 8m node voxels. The number of octree levels can be defined by the user; the default
number of levels is

⌈
1
2 log8(Nv)

⌉
, where Nv is the number of wall vertices and ⌈·⌉ is the rounding up

(ceil) operation. There are no restrictions on the size of the octree voxels. Smaller voxels may result in
a slightly more efficient selection of wall vertices. However, using too small voxels (i.e., too many levels
of octree) increases the memory to store the octree. Note that the global octree is a temporary data
structure that is used only for the identification of vertices to be searched, and it is not used in the actual
wall-distance computations.

The second global box with bounds extended by threshold is partitioned into a 3D matrix of voxels.
This matrix of voxels is used to select the wall faces to be searched. The voxel size in each direction
should be greater than threshold and the largest face length in that direction. The matrix dimensions
(the number of voxels in each dimension) are chosen based on the limitations of the voxel size. The global
box can be adjusted (increased) to accommodate integer number of voxels in each matrix dimension.

Fig. 3 illustrates the global bounding boxes, the global matrix of voxels for selecting wall faces, and
voxels at the fourth level of the octree for selecting wall vertices. For illustration purposes, the data are
computed for grid M of configuration 2.4. (See Table 3.) The size of the first global bounding box is
2533.9×1159.9×710.1 inches. The fourth level of the octree contains 84 = 4, 048 voxels for selecting wall
vertices, and the octree voxel size is 158.4× 72.5× 44.4 inches. The size of the second global bounding
box that has been expanded to accommodate the matrix of voxels is 2708.3× 1276.8× 851.2 inches. The
global matrix for selecting wall faces contains 22×24×16 voxels, and the voxel size is 123.1×53.2×53.2
inches. Recall that, for this configuration and flow (see Section 2), threshold = 53.2 inches. Typically
the size of the voxels in the matrix and in the octree would be very different. However, for grid M, voxels
in the matrix and at the fourth octree level are close to each other. This similarity occurs because the
maximum face length in the x-direction is relatively large. On grid G of configuration 2.4, the number of
octree levels is still 4. The voxel sizes within the matrix remain limited by threshold, 53.2× 53.2× 53.2,
and the dimensions of the matrix are 50× 24× 16.
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(a) Global bounding box for selecting wall vertices. (b) Voxels at fourth octree level.

(c) Global bounding box for selecting wall faces. (d) Matrix of voxels.

Figure 3: Global bounding boxes and partitions for Grid M, configuration 2.4.

4.2 Selecting Wall Data for Search on Each Rank
Prior to this step, each rank has the selected threshold value, the global octree of voxels for selecting
wall vertices to be searched, and the global matrix of voxels for selecting wall faces to be searched. At
this step, each rank reduces the wall data to be used in wall distance computations. The reduction is
accomplished through selection of the wall vertices and wall faces that have a chance to be the closest
ones to the local grid points owned by the rank. In the final implementation, only selected wall data
will be gathered on each rank. The reduction of the wall data is expected to improve load balance
between grid points that are close to the wall and grid points that are far from the wall. Grid points
that are beyond threshold do not require access to wall faces but may need access to many wall vertices.
Grid points that are within threshold require access to some wall faces and to a smaller number of wall
vertices.

For grid C of configuration 2.4, Fig. 4 illustrates the data used by a specific rank. In the figure, the
orange dots are the local grid points owned by the rank, blue dots are the wall vertices that are closest to
the local grid points, and the surface is red where the faces are closest to the grid points located within
threshold from the wall. This rank owns 50,365 grid points. From this total, 43,273 grid points are
within threshold from the wall. The midspan section of the wing is the closest wall surface to these grid
points. For grid points located beyond threshold, wall faces are not required. The wall vertices that are
closest to these points appear on the midspan and outboard sections the wing.

The following two steps are conducted on each rank to select wall vertices to be searched.

V1 The wall vertices are registered with voxels at the finest octree level. Vertices registered with each
voxel are counted and stored. Thus, nonempty voxels are easily identifiable. The information
about nonempty boxes propagates to the coarser levels of the octree. Each parent node that has a
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(a) Wall vertices (blue dots). (b) Wall faces (red faces).

Figure 4: Wall data on a rank for Grid C, configuration 2.4; orange dots are grid points on the rank.

nonempty child is marked as nonempty.

V2 Using the global octree, the rank identifies the voxels at the finest octree level that host wall vertices
selected for the search. The details of this step are given in Section 4.2.1.

Similar steps are conducted to select wall faces.

F1 Each rank registers the wall faces with voxels of the global matrix. A face belongs to a voxel if the
center of its bounding box is located within the voxel. For each voxel, registered faces are counted
and stored. Thus, nonempty voxels are easily identifiable.

F2 Each rank identifies voxels in the global matrix that host faces selected for the search. The details
of this step are given in Section 4.2.2.

After these steps, each rank has selected wall vertices and wall faces to compute the wall distance
for the grid points owned by the rank. Fig. 5 illustrates the distribution of the non-empty voxels that
are used for selecting wall vertices and wall faces (Fig. 5(a)) and the actual vertices and faces selected
on each rank (Fig. 5(b)). These data are collected for grid F of configuration 2.4 (see Section 2). The
computation uses 1600 Central Processing Units (CPU), each with its own rank; the partition size is
about 50k grid points per rank. As expected, identified voxels and selected wall data differ significantly
between ranks. One interesting observation is that ranks that identify more voxels do not necessarily
select more wall data. For example, there are several ranks between 600 and 800 that identify many
(over 100) voxels, but they select relatively few wall faces. Overall, the distribution of wall data is
relatively balanced; the maximum-to-average ratios are about two and three for wall faces per rank and
wall vertices per rank, respectively.

4.2.1 Selecting Wall Vertices

This section describes the steps for selecting wall vertices that can be the closest ones to the grid points
on the rank. One approach to achieve the optimal selection requires two passes through the octree of
voxels for each local grid point. In the first pass, the shortest maximum distance, shortest_max_dist,
from the point to a nonempty voxel is computed. In the second pass, the wall vertices registered with
the finest-level voxels that are closer to the grid point than shortest_max_dist are selected. The
implemented algorithm saves time by allowing each local grid point to traverse the octree only once.
During this traverse, the current, not final, shortest_max_dist is used to select wall vertices registered
with the voxels at the finest octree level. Some voxels and corresponding vertices may be unnecessarily
selected before the true shortest_max_dist has been computed. The number of such voxels is assumed
small. An additional pass through the identified voxels can be conducted to remove voxels and vertices
that have been selected spuriously.
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Figure 5: Distribution of wall data for Grid F, configuration 2.4.

Algorithm for selecting wall vertices
Initialize shortest_max_dist = huge
Set node nd to be the root node of the octree
Procedure VisitNode(pt, nd) /* point pt visits node nd.

If nd has nonempty children
Compute the minimum distance, ch.min_dist, from pt to voxels of nonempty children

/* ch is a child node
Sort nonempty children in ascending order of ch.min_dist
Loop over nonempty children in the order

If ch.min_dist ≥ shortest_max_dist, Exit Loop End If
VisitNode (pt, ch)

End Loop
Else /* nd is a leaf

Compute the maximum distance, nd.max_dist, from pt to voxel of nd
shortest_max_dist = min(nd.max_dist, shortest_max_dist)
Wall vertices registered with the voxel of nd are selected

End If
End Procedure VisitNode

4.2.2 Selecting Wall Faces

This section describes steps for selecting wall faces. The selected faces are expected to be closer than
threshold to at least one local grid point. The algorithm uses the global matrix of voxels and relies on
the property that the voxel size in each of the three coordinate directions (x, y, and z) exceeds threshold
and the largest face length in the corresponding direction. First, an auxiliary box is created for each
voxel. This auxiliary box extends the sides of the voxel in each coordinate direction by half of the
corresponding largest face length. The algorithm loops over local grid points. It first tries to place the
current grid point within a voxel. If the grid point is outside of the voxel matrix, then the point is
farther than threshold from the wall. For a grid point that falls inside of a voxel, the algorithm checks
the emptiness of the host voxel and the surrounding voxels whose auxiliary box is closer to the point
than threshold. The limitations on the voxel size from below imply that each voxel that satisfies the
proximity condition must be either a neighbor or a neighbor of neighbor (in the i, j, k metric) of the host
voxel. Wall faces registered with the nonempty voxels that satisfy the proximity condition are selected.
If all voxels satisfying the proximity condition are empty, then the grid point is farther from the wall
than threshold.

4.3 Point-to-Vertex Computations
Prior to this step, each rank has selected the wall vertices that have a chance to be the closest ones for
grid points owned by the rank. This section describes the steps for computing the shortest distance from
a local grid point to the selected wall vertices.
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The number of selected wall vertices on a given rank is denoted as Nv. A bounding box that encloses
these vertices is computed. This box serves as the root node of the tree of boxes. If Nv > 100, then the
root node is not a leaf, and finer levels of the tree are built. Boxes of non-leaf nodes at the current tree
level are divided into eight boxes. Wall vertices located within the smaller boxes are counted. Empty
boxes are removed. For each nonempty box, a next-level tree node is created, and the parent-child
relations are established. The size of the box is adjusted to provide tight bounds for the wall vertices
associated with this node. By default, if the number of wall vertices associated with the child node is less
than

√
Nv, then the node becomes a leaf of the tree. If the tree level has non-leaf nodes, then the next

tree level is generated recursively. At the end of this process, the tree has branches of various lengths.
Each tree node has the parent-child relations with preceding and succeeding generations of nodes. Each
node knows the number of wall vertices associated with the node (and all descending nodes) and has
a tight axis-aligned bounding box that encloses all these wall vertices. Collectively, leaves of the tree
contain all wall vertices on the rank, and each leaf has fewer than

√
Nv wall vertices.

The distance to wall vertices, wall_dist, is computed for one grid point at a time. A relative-error
tolerance, ϵ, can be introduced to reduce point-to-vertex computations. In particular, if the distance
from a point to a node bounding box multiplied by 1 + ϵ is greater than the current wall-distance, then
the node and all vertices associated with it are skipped. A recursive procedure is described as follows.

Minimum distance from a point to wall vertices
Initialize wall_dist = huge
Set nd as the root node of the tree
Procedure VisitP2V(pt, nd) /* point pt visits node nd.

If nd has children
Compute the minimum distance, ch.min_dist, from pt to boxes of children

/* ch is a child node
Sort child nodes in the ascending order of ch.min_dist
Loop over child nodes in the order

If (1 + ϵ)ch.min_dist > wall_dist, Exit Loop End If
VisitP2V (pt, ch)

End Loop
Else /* nd is a leaf

Loop over wall vertices associated with nd
Compute distance, dist, from pt to the wall vertex
wall_dist = min(wall_dist, dist)

End Loop
End If

End Procedure VisitP2V

4.4 Point-to-Face Computations
Computing the distance from a point to a triangular face is significantly more expensive than computing
the distance between two points. The algorithm for the point-to-face computations used in this paper
is similar to the one presented in Ref. [34]. The algorithm computes the distance, dist, from a 3D point
p to a 2D simplex (triangle) [p1,p2,p3] defined by points p1, p2, and p3. Point p∗ is the point within
[p1,p2,p3] which is the closest one to p; edist is an auxiliary value representing the distance from p to
an edge of the triangle.

Minimum distance from a point to a triangular face
u = p2 − p1, v = p3 − p1, and d = p− p1

denom = (u · u) (v · v)− (u · v) (v · u)
α1 = (d·u)(v·v)−(d·v)(v·u)

denom /* normalized projection on [p1,p2]

α2 = (u·u)(d·v)−(u·v)(d·u)
denom /* normalized projection on [p1,p3]

dist = huge, edist = huge
If (α1 ≥ 0) and (α2 ≥ 0) and ((α1 + α2) ≤ 1) /* compute dist to interior of [p1,p2,p3]

p∗ = p1 + α1u+ α2v
dist = |p− p∗|

Else
If (α1 < 0) /* compute edist to [p1,p3]
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β = (d·v)
(v·v) /* normalized projection on [p1,p3]

If (0 < β < 1)
p∗ = p1 + βv

Else If (β ≤ 0)
p∗ = p1

Else
p∗ = p3

End If
edist = |p− p∗| , dist = min(edist, dist)

End If
If (α2 < 0) /* compute edist to [p1,p2]

β = (d·u)
(u·u) /* normalized projection on [p1,p2]

If (0 < β < 1)
p∗ = p1 + βu

Else If (β ≤ 0)
p∗ = p1

Else
p∗ = p2

End If
edist = |p− p∗| , dist = min(edist, dist)

End If
If ((α1 + α2) > 1) /* compute edist to [p2,p3]

w = p3 − p2, g = p− p2, β = (g·w)
(w·w) /* normalized projection on [p2,p3]

If (0 < β < 1)
p∗ = p2 + βw

Else If (β ≤ 0)
p∗ = p2

Else
p∗ = p3

End If
edist = |p− p∗| , dist = min(edist, dist)

End If
End If

The wall-distance method puts an emphasis on minimizing instances of point-to-face computations.
The local matrix of voxels allows quick elimination of grid points that are located farther from the wall
than threshold. For the grid points that are close to the wall, there are other algorithmic features to
reduce point-to-face computations. In particular, each face is wrapped in an axis-aligned bounding box.
Even if the algorithm logic indicates the need to compute the distance from a point to a face, the distance
is first computed to the face bounding box. This preliminary computation may reveal that the distance
from the point to the face bounding box is greater than the current wall-distance estimate. It means
that the face is too far from the point, and the point-to-face computation is not needed. Also, a relative-
error tolerance, ϵ, can be been introduced to further reduce point-to-face computations. In particular,
if the distance from a point to a face bounding box multiplied by (1 + ϵ) is greater than the current
wall-distance estimate for the point, then the distance from the point to the face is not computed.

The following steps construct data structures for computing the point-to-face wall distance.

• The largest x-, y-, and z-directional lengths among the selected faces are computed.

• The minimum local voxel size in each direction is determined to be the minimum of threshold and
the largest selected-face length in that direction.

• A bounding box enclosing all selected wall faces on the rank is computed and extended by threshold
in each coordinate direction.

• The extended bounding box is divided into the matrix of voxels. The voxel directional size is
the minimum local voxel size in the corresponding direction. The extended bounding box can be
adjusted to accommodate reasonable dimensions for the matrix of voxels.

• Each selected face on the rank is registered with a voxel.
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• The bounding box of each voxel is adjusted to provide tight bounds for the faces registered with
this voxel. This adjustment may result in shrinking or expanding the original voxel bounds. The
bounding boxes of neighboring voxels can now overlap. Because the voxel size exceeds the largest
face length, the adjusted bounding box can reach only to neighbors of the current voxel.

• If there are more than 50 faces registered with a voxel, then the voxel is considered as overpopulated.
A tree data structure is created to search among faces of overpopulated voxels.

• The tree data structure for overpopulated voxels is similar to the one described in Section 4.3. The
main differences are the following. The tree is built for faces that are associated with a specific
voxel. The maximum number of the tree levels is specified as 10. A tree node is declared as a
leaf if it has fewer than 50 faces. The node’s bounding boxes are adjusted to accommodate faces
associated with the tree node and can overlap.

The algorithm to improve the wall-distance estimate for the grid points located near the wall is as
follows. For each local grid point, the wall distance, wall_dist, is initialized by the distance to the wall
vertices (see Section 4.3). For local points that are closer than threshold to the wall, the algorithm
improves this estimate by computing the distance to wall faces. The following steps are conducted for
one grid point, pt, at a time, where av is an anisotropic voxel within the local voxel matrix, fc is a face,
and fcb is the bounding box of fc.

Minimum distance to wall face
If pt is inside voxel matrix /* otherwise, pt is beyond threshold

Find av that contains pt
Loop over nonempty neighbor and neighbor-of-neighbor voxels

Compute distance, av.dist, from pt to bounding box of av
If av.dist > threshold or (1 + ϵ)av.dist > wall_dist, Exit Loop End If
If av has more than 50 faces /* av overpopulated; recursive tree call

VisitP2F (pt, av)
Else /* check all faces of av

Loop over faces fc associated with av
Compute distance, fcb.dist, from pt to bounding box of fc
If fcb.dist > threshold or (1 + ϵ)fcb.dist > wall_dist, Cycle End If
Compute distance, fc.dist, from pt to fc
wall_dist = min(wall_dist, fc.dist)

End Loop
End If

End Loop
End If

Recursive search within overpopulated voxels
Procedure VisitP2F(pt, nd) /* point pt visits node nd.

If nd has children
Compute distance, ch.dist, from pt to the bounding boxes of children /* ch is a child node
Sort child nodes in the ascending order of ch.dist
Loop over child nodes in the order

If ch.dist > threshold or (1 + ϵ)ch.dist > wall_dist, Exit Loop End If
VisitP2F (pt, ch)

End Loop
Else /* nd is a leaf

Loop over faces fc associated with nd
Compute distance, fcb.dist, from pt to the bounding boxes of fc
If fc.dist > threshold or (1 + ϵ)fcb.dist > wall_dist, Cycle End If
Compute distance, fc.dist, from pt to fc
wall_dist = min(wall_dist, fc.dist)

End Loop
End If

End Procedure VisitP2F
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5 Numerical Results

5.1 Comparison with Reference Methods
The wall distance has been computed for four grids generated for HLPW5 configuration 2.4 (Table 3)
by the three methods: the new method, the FUN3D legacy method, and the refine method. The new
method uses threshold = 53.2 inches and zero relative-error tolerance ϵ = 0. The reference methods
are applied without any additional optimization. All methods use the same dual-socket Intel Xeon Gold
6148 Skylake compute nodes consisting of 40 2.40 GHz CPU cores. One MPI rank is used per CPU core,
and nodes are connected with Infiniband. The grid partitions target about 50 thousand grid points per
CPU core on each grid. The new method and the legacy FUN3D method use the same grid partitions.
The refine method uses its own partitioner. The wall-distance performance on different grid partitions
can vary significantly. A partition tuned for the wall-distance calculations would evenly distribute grid
points that are close to the wall. However, since grids are partitioned to equidistribute grid points while
minimizing edge cuts, redistribution of grid points is considered impractical. Table 4 shows the total time
taken by each wall-distance method. The new method is significantly faster than the reference methods,
especially on fine grids. On grid C with six million grid points, the new method and the legacy method
show comparable performance; the refine method is almost four times slower. The speedup provided by
the new method is further increased on finer grids. On grid G with 178 million grid points, the new
method provides a 3X speedup over the legacy method and a 5X speedup over the refine method.

Table 4: Performance of methods for wall-distance computation

Grid Grid points CPU cores New method Legacy method refine method
(millions) time (s) time (s) time (s)

C 6 120 1.36 1.96 5.80
M 15 320 1.91 4.05 8.38
F 81 1600 5.59 15.46 26.78
G 178 3560 9.45 30.12 51.77

Although scalability of the new method is better than that of the reference methods, none of the
considered methods is scalable. The time for wall-distance computations increases multifold on fine
grids. A scalable method would show a constant time, given that the size of the partitions remains
approximately the same for all grids. One reason for the poor scalability is the fact that each rank
gathers the entire wall data.

The effect of the new wall-distance method on solution accuracy is assessed for configuration 2.1 and
the following freestream flow conditions: angle of attack is α = 6◦, Mach number is M = 0.2, Reynolds
number is ReMAC = 5.4×106, the reference static temperature Tref = 518.67 ◦R, and the reference static
pressure is Pref = 14.696 psi. The RANS equations use the negative version of the Spalart-Allmaras
turbulence model [35]. FUN3D converged residuals to machine-zero levels on grid M (see Table 2) for
the solutions corresponding to the three different wall-distance methods. The errors in the solutions are
assessed by subtracting the non-dimensional solution quantities computed with the exact wall distance
provided by refine from the corresponding solution quantities computed with the wall distance provided
by either the new method or the legacy method. Table 5 compares the maximum and root-mean-square
(RMS) norms of the wall-distance errors for all grid points. In parentheses, the values of the exact
and calculated wall distance are shown for the grid point where the maximum error is observed. The
maximum and RMS norms of the errors are similar for the new method and the legacy method. However,
the maximum error in the legacy method occurs for a grid point close to the wall, whereas the maximum
error in the new method occurs at a grid point far from the wall. Table 6 shows a comparison of errors
in the eddy viscosity, which are six orders of magnitude smaller with the new method compared with the
legacy method. This difference is also present in the error assessments for the pressure and skin-friction
coefficients shown in Table 7. However, the absolute errors are small in the solutions computed with
either method. Finally, lift, drag, and moment coefficients are compared in Table 8. The coefficients
computed with the new method and with the exact wall distance are identical. The coefficients computed
with the legacy method match to 5-6 significant digits. Differences are highlighted in bold font in Table 8.
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Table 5: Wall-distance error

Norm New method Legacy method
Max 3.08 2.99

(exact: 158.50, calculated: 161.58) (exact: 0.06, calculated: 3.05)
RMS 0.02 0.01

Table 6: Eddy viscosity error

Norm New method Legacy method
Max 6.88E-04 148.33
RMS 1.83E-06 0.59

Table 7: Error in pressure and skin friction coefficients

Norm New method Legacy method
pressure: Max 0 7.91E-05
pressure: RMS 0 8.58E-07

skin friction: Max 1.86E-09 3.28E-03
skin friction: RMS 1.11E-11 1.92E-05

Table 8: Aerodynamic coefficients

Coefficient New method Legacy method refine method
CL 6.934988E-01 6.935006E-01 6.934988E-01
CD 3.932581E-02 3.932855E-02 3.932581E-02
CMx 3.027655E+02 3.027661E+02 3.027655E+02
CMy -1.378081E-01 -1.378058E-01 -1.378081E-01
CMz 1.823076E+01 1.823041E+01 1.823076E+01

5.2 Profiling Steps of New method
There are four major steps comprising the new wall-distance method listed in Section 4. Table 9 provides
a breakdown of the time that the new method spends on these four steps on grids M and F of configuration
2.4. Grid M has 15 million grid points, 540 thousand wall vertices, and 1.1 million wall faces and uses
320 CPU cores. Grid F has 82 million grid points, 1.2 million wall vertices, and 3.7 million wall faces
and uses 1600 CPU cores. (See Tables 3 and 4.) For each step of the method, the minimum, maximum,
and average time are shown, as well as the specific times for the fastest and slowest ranks. The total
time used by different ranks ranges from 1 to 1.9 seconds on grid M and from 3 to 5.6 seconds on grid
F. For reference, the time spent by the solver on a simple nonlinear iteration is approximately 2 seconds
on grid M and 2.17 seconds on grid F. The time spent by the new wall-distance method on Step 1
(gathering the global wall data on a rank) is practically the same for all ranks of a given grid. It is
currently approximately 34% and 42% of the maximum total time on grids M and F, respectively. This
step exhibits the worst scaling. The time spent at this step is expected to be reduced significantly when
only the necessary wall data are collected on each rank. At Step 2 (selecting the local wall data), BVH
data structures are used to select the wall vertices and faces that can be the closest ones for the local grid
points. This step is currently not needed for gathering data, but it significantly improves performance
of the actual wall-distance computations at Step 3 and Step 4. Step 2 currently scales with the number
of wall faces. Steps 3 and 4 perform the point-to-vertex and point-to-face computations, respectively.
Collectively, they take approximately 40-50% of the time on the slowest ranks and 15-30% of the time
on average ranks. The point-to-vertex computations scale well relative to other steps; the time of Step
3 increased by 47% on grid F compared to the time on grid M. The point-to-face computations take
significantly more time than the point-to-vertex computations and currently scale with the number of
wall faces. The slowest rank on grid F searches 757 thousand wall vertices and 684 thousand wall faces
identified as potentially the closest ones for the grid points on the rank. An average rank searches 460
thousand vertices and 380 thousand faces. The number of wall faces searched by the slowest rank is
among the higher ones, and the number of searched wall vertices is also high. The fastest ranks spend
little time on point-to-vertex and point-to-face computations; most of their time is spent on gathering
the wall data.
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Table 9: Breakdown of wall-distance computation time

Gathering Selecting Point-to-vertex Point-to-face Total wall
global local computations computations distance

wall data (s) wall data (s) (s) (s) (s)
Grid M

Min 0.62 0.17 0.035 0.013 0.99
Max 0.66 0.44 0.46 0.73 1.91

Average 0.63 0.31 0.094 0.26 1.30
Fastest rank 0.66 0.21 0.11 0.013 0.99
Slowest rank 0.65 0.33 0.36 0.57 1.91

Grid F
Min 2.32 0.47 0.04 0.0 3.03
Max 2.41 0.97 1.38 1.87 5.59

Average 2.36 0.73 0.16 0.38 3.64
Fastest rank 2.36 0.48 0.039 0.15 3.03
Slowest rank 2.36 0.90 0.53 1.80 5.59

The fraction of time spent on MPI communication is relatively low. Table 10 lists the MPI time on
grids M and F for collecting the surface, vertex, and face data of the global wall on each rank. During
the wall-surface MPI communication, each rank collects indices of wall vertices. During the MPI com-
munication for vertices, each rank collects coordinates of wall vertices. During the MPI communication
for faces, each rank collects indices of wall faces and links faces to vertices. The entire MPI time is 9-12%
of the total time on the slowest rank; MPI communication accounts for 26-30% of the time to gather the
global wall data.

Table 10: MPI time for collecting global wall data

Wall surface Wall vertices Wall faces New method
(s) (s) (s) total time (s)

Grid M
Min 0.05 0.040 0.095 0.99
Max 0.07 0.042 0.12 1.91
Average 0.06 0.041 0.11 1.30

Grid F
Min 0.19 0.15 0.29 3.03
Max 0.22 0.16 0.31 5.59
Average 0.21 0.15 0.30 3.64

5.3 Effect of threshold and Relative-Error Tolerance
Calculation of the distance from a point to a triangular face (see Algorithm in Section 4.4) is the most
expensive calculation in evaluating the wall distance for a grid point. BVH data structures eliminate
large portions of the domain from consideration for the point-to-face calculations. The new wall-distance
method provides two additional parameters to further minimize the instances of direct point-to-face
calculations: a grid-point separator, threshold, and a relative-error tolerance, ϵ. For the grid points that
are closer to the wall than threshold, the wall distance is computed to wall faces; for the points that
are farther from the wall than threshold, the wall distance is computed to wall vertices. With ϵ = 0,
the point-to-vertex and point-to-face calculations are performed for any vertex and face whose bounding
box indicates that the current wall-distance estimate can be potentially reduced. With ϵ > 0, if the
distance to a bounding box indicates that the vertices or faces associated with the box cannot result in a
wall-distance estimate that is smaller than the most recent estimate divided by (1+ ϵ), then distances to
vertices and faces of this box are not computed. Decreasing threshold or increasing ϵ reduces the direct
point-to-face calculations in wall-distance computations. In the performance assessments reported in the
previous sections, threshold = 53.2 inches and ϵ = 0 have been used for configuration 2.4. This threshold
value is based on doubling the boundary-layer thickness estimate, Eq. 1. In this section, the performance
of wall-distance computations is assessed for solutions computed with baseline threshold = 53.2 and
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ϵ = 0.02 and ϵ = 0.05, along with threshold = 26.6.
Table 11 shows the total time for computing the wall distance with four threshold/ϵ combinations.

The combination 53.2/0 represents the baseline wall-distance computations. Increasing the relative-error
tolerance results in a noticeable speedup on all grids: ϵ = 0.02 results in 1.10X speedup on grid C and
1.21X speedup on grid G; ϵ = 0.05 results in 1.18X speedup on grid C and 1.30X speedup on grid G.
The speedup increases on finer grids. Reduction of threshold results in 1.07X speedup on grid C and
1.16X speedup on grid G. Different combinations of ϵ and threshold will be tested in the future.

Table 11: Parametric study of performance

Grid Grid points CPU cores threshold (inches)/ϵ
(millions) 53.2/0 53.2/0.02 53.2/0.05 26.6/0

C 6 120 1.46 1.33 1.24 1.36
M 15 320 1.91 1.75 1.61 1.81
F 81 1,600 5.59 4.64 4.21 4.83
G 178 3,560 9.45 7.84 7.27 8.17

The effects of threshold and ϵ on the accuracy of CFD solutions are studied for configuration 2.1
and flow conditions described in Section 5.1. The new method uses threshold = 54.2 inches with
ϵ = 0, ϵ = 0.02, and ϵ = 0.05 as well as threshold = 27.1 inches with ϵ = 0. Solutions with machine-zero
levels of residuals have been computed on grid M. The wall-distance errors are evaluated in Table 12
for ϵ = 0. With threshold = 27.1, the maximum and RMS norms of the wall-distance error increase
by 32% and 40% respectively. The maximum error occurs closer to the wall than the maximum error
in computations with threshold = 54.2. The following detailed analysis of the solution accuracy shows
that the reduction of threshold has a negligible effect on solution accuracy.

Table 12: Parametric study of wall-distance error

Norm threshold (inches)/ϵ
54.2/0 27.1/0

Max 3.1 4.1
(exact: 158.5; calculated: 161.6) (exact: 34.1; calculated: 38.2)

RMS 0.015 0.021

Table 13 compares eddy-viscosity errors in solutions computed with the four threshold/ϵ combina-
tions. The effect of threshold reduction on eddy-viscosity errors is negligible, with the maximum increase
from 0.001% to 0.005%. Increasing the relative-error tolerance has a more significant effect: the absolute
error increases by several orders of magnitude, and the maximum relative-error increases to 16% and
47% for ϵ = 0.02 and ϵ = 0.05, respectively. However, the overall error in the eddy viscosity remains
low. For reference, the maximum eddy viscosity observed in the solution with threshold = 54.2 inches
and ϵ = 0 is 1235.14.

Table 13: Parametric study of eddy-viscosity error

Norm threshold (inches)/ϵ
54.2/0 54.2/0.02 54.2/0.05 27.1/0

Max 6.9E-04 7.6E-01 1.9 1.3E-03
Max(%) 0.001% 15.5% 47.1% 0.005%

RMS 1.8E-06 1.8E-02 3.4E-02 8.8E-05

Table 14 compares errors in the surface pressure and skin friction. Again, the effect of threshold
reduction is negligible. Although increasing the value of ϵ increased the error norms by 2-3 orders of
magnitude for the pressure and by 5-6 orders magnitude for the skin friction, the overall errors remain
small, a fraction of a percent.

Finally, Table 15 shows the effect of the method tuning parameters on the lift, drag, and moment
coefficients. Bold font highlights the digits that do not match the corresponding digits in the coefficients
computed from the baseline solution. The coefficients computed with the reduced threshold are identical
to the coefficients computed from the baseline solution. Increasing the relative-error tolerance results in
a mismatch in the sixth significant digit for the drag coefficient and in the seventh significant digit for the
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Table 14: Parametric study of errors in pressure and skin friction coefficients

Norm threshold (inches)/ϵ
54.2/0 54.2/0.02 54.2/0.05 27.1/0

pressure: Max 0 3.99E-06 2.26E-05 5.96E-08
pressure: RMS 0 5.91E-08 2.37E-07 3.05E-10

skin friction: Max 1.86E-09 1.19E-03 1.19E-03 1.86E-09
skin friction: RMS 1.11E-11 1.96E-06 2.08E-06 5.73E-11

lift and moment coefficients. More studies are needed to establish optimal values for the relative-error
tolerance and threshold.

Table 15: Parametric study of aerodynamic coefficients

threshold (inches)/ϵ
54.2/0 54.2/0.02 54.2/0.05 27.1/0

CL 6.934988E-01 6.934987E-01 6.934990E-01 6.934988E-01
CD 3.932581E-02 3.932613E-02 3.932630E-02 3.932581E-02
CMx 3.027655E+02 3.027654E+02 3.027655E+02 3.027655E+02
CMy -1.378081E-01 -1.378078E-01 -1.378073E-01 -1.378081E-01
CMz 1.823076E+01 1.823074E+01 1.823073E+01 1.823076E+01

6 Summary and Future Work
Wall distance is a fundamental quantity for many Reynolds-averaged Navier-Stokes (RANS) turbulence
models. The efficiency of wall-distance calculations has become more critical for computational fluid
dynamics (CFD) applications as the size of computational grids has significantly increased in recent
years. Wall-distance methods implemented in modern high-performance CFD solvers have often been
developed for static grids, follow nearest-neighbor search algorithms developed for applications in other
areas of science and engineering, and may not be well-suited for high-performance CFD computing. This
paper has presented a new search-based wall-distance method that is tailored for the specific requirements
of turbulent-flow simulations on general unstructured grids. The method uses native partitions of the
flow solver, limits searches on each rank to the wall data (vertices and faces) that could possibly be
the closest ones to the grid points on the rank, and applies different accuracy criteria for points that
are near and far from the wall. The new method has been implemented in a NASA unstructured-grid,
high-performance CFD solver, FUN3D. Tests have been completed with an initial implementation, but
further enhancements and validation are in progress.

The new method strives to minimize calculating the distance between a grid point and a wall face,
which is the most expensive operation. One of the main features of the new method is a user-defined
parameter threshold that separates grid points into two groups. For grid points that are closer to the
wall than threshold, the minimum distance is computed to wall faces; for grid points that are beyond
threshold, the wall distance is computed to wall vertices. The point-to-vertex distance calculation
is significantly less expensive than the point-to-face distance calculation. Bounding-volume hierarchy
(BVH) approaches have been successfully used in many nearest-neighbor algorithms to exclude large
portions of computational domain from the search. BVH data structures based on a tree of bounding
boxes and a matrix of voxels have been employed to select the minimum required wall data for each
rank and to accelerate the search for the closest wall vertices and faces. The new wall-distance method
also provides another parameter, the relative-error tolerance, which, when greater than zero, can further
reduce the number of point-to-vertex and point-to-face computations.

The performance and accuracy of the method have been favorably compared with that of two estab-
lished reference wall-distance methods. The reference methods are the legacy method in FUN3D and a
method implemented in the NASA mesh-adaptation tool, refine. The assessments have been performed
for unstructured, mixed-element grids generated for two configurations used in the Fifth AIAA CFD
High-Lift Prediction Workshop (HLPW5). The new method outperforms the reference methods by fac-
tors of 3 to 5; the speedup increases on finer grids. Accuracy assessments have been carried out for
solutions computed with the negative variant of the Spalart-Allmaras model for a set of HLPW5 flow

18



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

conditions on a representative grid. Wall distance, eddy viscosity, surface pressure, skin friction, and
aerodynamic coefficients computed with the wall distance provided by the current method have been
compared with those computed with the exact wall distance. The differences have been found negligible;
specifically, the lift, drag, and three moment coefficients match to seven significant digits.

The four major steps of the new method, namely, (1) gathering the global wall data, (2) selecting
the local wall data, (3) point-to-vertex computations, and (4) point-to-face computations, have been
profiled on two grids. The first step still uses a legacy approach in which each rank gathers the entire
wall surface. This step takes the largest portion of the total wall-distance time and scales the worst with
problem size among the four steps. Replacing this step with an approach in which each rank gathers
only the necessary wall data is the immediate task for future work. Other steps take less time and scale
somewhat better, although none of the steps scales perfectly, which is expected for partitions that are
not load-balanced for the wall-distance computations.

Parametric studies have been conducted to assess the impact of varying threshold and the relative-
error tolerance on performance and accuracy. Increasing the relative-error tolerance to 2% or 5% resulted
in an additional noticeable speedup on all grids ranging from 1.1X to 1.3X. The speedup increases on
fine grids. Reducing threshold by a factor of two resulted in a speedup ranging from 1.07X on a coarse
grid to 1.16X on a finer grid. The impact of these variations on solution accuracy is minimal. The largest
error observed for the 5% tolerance occurred in the sixth significant digit of the drag coefficient.

Future work to further improve wall-distance computations for turbulent-flow simulations will focus
on the following steps:

1. Replace gathering the entire wall surface on each rank with collecting only necessary wall vertices
and faces.

2. Study ways to further reduce instances of point-to-face computations, e.g., by using oriented bound-
ing boxes.

3. Assess performance of the wall-distance method for unsteady flow simulations on dynamic, deform-
ing, overset, unstructured grids.

4. Study approaches to implement of this method on GPU architectures.
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