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Abstract: This paper integrates adjoint-based aerodynamic shape optimization within a unified
framework employing the Hybridized Discontinuous Galerkin (HDG) flow solver and uses adjoint-
based adapted meshes to control the discretization errors. Results are presented for the geometry-
constrained inviscid transonic drag minimization benchmark case 1, defined by the Aerodynamic
Design Optimization Discussion Group (ADODG). The accuracy of the objective function is cru-
cial for achieving optimal results, necessitating the control of discretization errors. To address
this, metric-based anisotropic mesh adaptation using adjoint-based error estimates is employed.
Through an inverse design problem focusing solely on the angle of attack as the design variable,
the study demonstrates the effectiveness of mesh adaptation in enhancing shape optimization out-
comes.
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1 Introduction
Driven by the continued progress in numerical optimization techniques and computational fluid dynamics,
Aerodynamic Shape Optimization (ASO) has become integral to modern aircraft design. ASO modifies
the geometry, defined by a set of design variables, to achieve specific objectives. These objectives include
minimizing the drag coefficient [1], achieving a target pressure distribution [2], etc.

ASO methods are classified as either gradient-based or non-gradient-based. Non-gradient-based meth-
ods can converge to global optima, while gradient-based methods are more adept at converging to lo-
cal optima. When dealing with many design variables, the non-gradient-based methods require many
function evaluations, making them computationally prohibitive [3, 4]. An adjoint method to calculate
gradients [5, 6] allows a gradient-based optimizer to deal with several design variables effectively [7].

Calculating the objective function and its gradient requires solving a set of PDEs, such as the Euler
or the Navier-Stokes equations, depending on the flow type. Such PDEs do not exhibit an analytic
solution and are required to be solved numerically. High-order methods such as the DG methods and
their variations [8, 9, 10] have the potential to solve such equations in an efficient manner. These methods
offer better accuracy per degree of freedom than lower-order methods such as the finite volume method
[11, 12].

The discretization error in the objective function and its gradients can pollute the optimization results.
Controlling the size of the meshes used for discretization can control such errors. A few authors have
presented strategies to ensure the reliability of optimization by controlling the mesh size [13, 14]. In the
context of aerodynamic shape optimization, Dadone and Grossman[15, 16, 17] have presented methods
for shape optimization using a set of uniformly refined meshes.

Mesh adaptation effectively controls discretization errors by targeting regions in the domain that
contribute most to the errors while keeping the mesh coarse elsewhere. Adjoint-based error estimates
[18, 19], which rely on the adjoint solution of the flow equation, provide localized error estimates for
specific objective functions. In aerodynamic shape optimization (ASO), where accurate objective function
values are crucial, adjoint-based output error estimators are particularly attractive for mesh adaptation.
Significant progress has been made in mesh adaptation strategies, including h-adaptation in finite volume
methods and h-, p-, and hp-adaptation for high-order methods. Fidkowski and Darmofal [20] provides
a comprehensive review of these strategies. Within ASO, a few authors have implemented strategies
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to integrate adjoint-based mesh adaptation [21, 22, 23, 24, 25, 26]. Such strategies have been shown
to offer more reliability on the optimization output. These works use finite volume or DG methods or
their variations as the flow solvers. A comparative study signifies the effectiveness of DG flow solver
over finite volume solver [27] for aerodynamic shape optimization. A variation of the DG method, the
Hybridized Discontinuous Galerkin (HDG) method [10], offers the DG schemes’ accuracy using lower
degrees of freedom. Balis, Jacobs, and May [28] recently integrated a shape optimization module within
an HDG solver.

The present work integrates a shape optimization module into a unified framework utilizing the
Hybridized Discontinuous Galerkin (HDG) method as the solver and controls the discretization errors
using mesh adaptation. The HDG solver we employ was developed by Woopen, Balan, and May [29]. It
is implemented in C++ and is structured upon a unifying framework [30] that facilitates the seamless
integration of various physical models, discretizations, and iterative solvers. The solver already has
an implementation of a mesh adaptation strategy based on the global mesh optimization approach
proposed by Rangarajan, May, and Dolejsi [31]. This strategy employs adjoint-weighted residuals for
error estimation and can generate highly anisotropic mesh elements.

We utilize a constrained optimizer, the Preconditioned Sequential Quadratic Programming (PSQP)
method, from the external optimization library pyOptSparse [32, 33], within the HDG solver. Our
framework can handle constrained optimization problems for drag minimization and inverse design prob-
lems involving multiple design variables. We verify the implementation of our optimizer by solving the
benchmark test case for inviscid transonic drag minimization with geometric constraints laid down by
the AIAA Aerodynamic Design Optimization Discussion Group (ADODG) [34].

To understand the effect of adaptive mesh, we present results for a single design variable inverse
design problem. A target value of pressure distribution at a selected angle of attack is known apriori,
and the optimizer’s goal is to reach that value of angle of attack using the information of the current
pressure distribution and the target distribution. Adaptive meshes help ensure that the angle of attack
reaches its target value.

The structure of this paper is as follows: Section 2 discusses the optimization problem, sets the
context, and provides the mathematical formulation. Section 3 details the calculation of the objective
function and the HDG discretization. Section 4 explains the gradient calculation using the adjoint
solution. Section 5 addresses adjoint-based error estimates and the mesh adaptation strategy. Finally,
Section 6 discusses the results.

2 Optimization Problem Formulation
Shape optimization can be formulated as a minimization problem to find optimal design variables F
that minimize an objective function J subject to constraints H. Mathematically, it can be expressed as
follows:

minimize
F

J (F ,u)

subject to R(F ,u) = 0

H(F ,u) ≤ 0

(1)

The objective function J (F ,u) depends on the flow variable u, which is obtained by solving a set of
partial differential equations (PDEs), such as the Euler or Navier-Stokes equations. These PDEs can
be considered an equality constraint, denoted by R, that must be satisfied at every optimization step.
Additional equality and inequality constraints, denoted by H, may also be present.

It is not possible to obtain an analytic solution to the PDEs under consideration, thus necessitating
a discretization to achieve a finite-dimensional approximation of the PDEs. By discretizing the domain
and focusing solely on the PDE constraints, we can reformulate the optimization problem as follows:

minimize
F

Jh(F ,uh)

subject to Rh(F ,uh) = 0 (2)

Here, the subscript h indicates the discretization of the continuous problem. Jh(F ,uh) represents the
discretized objective function, and Rh(F ,uh) denotes the discretized residuals of the PDEs, ensuring
that the PDE constraints are satisfied within the discretized framework.
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For the remainder of this paper, J represents Jh unless otherwise specified about the continuous
problem.

We solve the optimization problem 2 using a Sequential Quadratic Programming (SQP) type of
constrained optimizer. To achieve this, we interface with the external library pyOptSparse [33], which
provides access to various optimizers, including the Preconditioned Sequential Quadratic Programming
(PSQP) optimizer. This optimizer requires the Hessian matrix of the objective function. pyOptSparse
approximates this Hessian matrix using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm,
which iteratively updates the Hessian approximation based on gradient evaluations.

3 Evaluating the Objective Function
In aerodynamic shape optimization, we evaluate the objective function and constraints using physical
parameters such as the drag coefficient and the drag-to-lift ratio. We can represent such an objective
function as a surface integral of a scalar function of the flow solutions and their gradients.

We express the objective functional J mathematically as:

J =

∫
∂Ω

j∂Ω(u,∇u) dx, (3)

where u represents the flow solutions, and ∇u denotes their gradients. We take the integral over the
boundary ∂Ω, corresponding to the geometry.

3.1 Governing Equations
We can write the flow equations in a general conservation form as:

∇ · f(u,∇u) = s(u,∇u) in Ω ⊂ Rd,

u = g
D

on Γ
D
,

n · ∇u = g
N

on Γ
N
.

(4)

Here, the total flux and the source term are defined as:

f : Rm × Rm×d → Rm×d,

s : Rm × Rm×d → Rm,

where m denotes the number of conserved variables and d denotes the spatial dimension. We can
decompose the total flux f(u,∇u) into convective and viscous components as:

f(u,∇u) = f c(u)− fv(u,∇u). (5)

Based on this decomposition and using the mixed formulation, we can write the conservation law as:

∇ · f c(u)−∇ · fv(u,∇u) = s(u,∇u) in Ω ⊂ Rd,

q = ∇u in Ω ⊂ Rd,

u = g
D

on Γ
D
,

n · q = g
N

on Γ
N
.

(6)

The mixed formulation provided by these equations is frequently applied in viscous discontinuous Galerkin
discretizations because it constitutes a system of only first-order partial differential equations.

3.2 HDG Discretization
Discontinuous Galerkin (DG) methods [8] have recently gained considerable interest for their high-order
accuracy. However, they have high degrees of freedom (DOF), necessitating significant memory and com-
putational cost. Hybridized Discontinuous Galerkin (HDG) methods [9] are a variation of the standard
DG methods that reduce the number of globally coupled degrees of freedom.

The main advantage of hybridizing finite element discretizations is that the resulting set of algebraic
equations has globally coupled degrees of freedom only on the skeleton of the computational mesh.
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Consequently, solving for these degrees of freedom involves solving a much smaller system. This reduces
storage requirements and allows for a faster solution with iterative solvers.

The domain Ω is discretized into non-overlapping elements, Th, such that ∪K∈Th
K = Ω. Two distinct

sets are defined: ∂Th for element edges and Γh for element faces:

∂Th := {∂K \ ∂Ω : K ∈ Th}, (7)
Γh := {e : e = K ∩K ′ for K,K ′ ∈ Th; measd−1(e) ̸= 0}. (8)

These sets do not include domain boundary edges, denoted by Γb
h. Let Πp(D) denote polynomials of

degree at most p on domain D. Discontinuous function spaces are defined as:

Vh = {v ∈ L2(Ω) : v|K ∈ ΠpK (K), K ∈ Th}m×d, (9)

Wh = {u ∈ L2(Ω) : u|K ∈ ΠpK (K), K ∈ Th}m, (10)

Mh = {µ ∈ L2(Γh) : µ|e ∈ Πpe(e), e ∈ Γh}m. (11)

Assuming uniform polynomial orders across elements and edges (pK = pe = p), v ∈ Vh, u ∈ Wh, and
µ ∈ Mh are piecewise polynomials of degree p, exhibiting discontinuities across edges (for v and u) or
vertices (for µ).

The HDG method is expressed as a variational equation within Xh = Vh ×Wh ×Mh:

xh ∈ Xh : Nh(xh;yh) = 0 ∀yh ∈ Xh, (12)

where the semilinear form Nh is derived from DG discretization on each element, ensuring conservation
through continuity of normal flux across elements.

For more details of the semi-linear form, we refer to [30].

4 Evaluating the Gradients
In gradient-based optimization, achieving efficient and precise gradient calculations is essential. The
adjoint method provides a practical approach for computing these gradients. Adjoints can be discrete
or continuous [35], depending on how we formulate them. Although the continuous adjoint method is
recognized for its computational efficiency, we chose the discrete one due to its straightforward imple-
mentation [7]. The HDG framework already integrates a discrete adjoint solver for mesh adaptation. We
make use of the adjoint solver for gradient calculation.

4.1 Gradient Calculation Using Discrete Adjoint Solution
We present a summary for formulating the gradients using the adjoint solution similar to [6]. To compute
the gradients of the objective function J (F ,u) with respect to the design variable F , we begin with the
flow solution u, obtained by driving the discrete residual vector R(F ,u) to zero. Hence, we have:

J = J (F ,u), (13)
R(F ,u) = 0. (14)

The gradient of the objective function can be calculated using the chain rule:

dJ
dF =

∂J
∂F +

∂J
∂u

∂u

∂F . (15)

Applying the chain rule to the total derivative of the residual R with respect to the design variable F
and setting it to zero, as the residual must be zero at each design iteration, we obtain:

dR
dF =

∂R
∂F +

∂R
∂u

∂u

∂F = 0, (16)

∂u

∂F = −
(
∂R
∂u

)−1
∂R
∂F . (17)
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Substituting the expression for ∂u
∂F into the equation for the gradient of J , we get:

dJ
dF =

∂J
∂F − ∂J

∂u

(
∂R
∂u

)−1
∂R
∂F . (18)

We solve the system of equations ∂J
∂u

(
∂R
∂u

)−1 ∂R
∂F using the adjoint method, defining the adjoint vector

ψ as:

ψ =

(
∂RT

∂u

)−1 (
∂J
∂u

)T

. (19)

This linear system scales with the number of functions of interest rather than the number of design
variables. Hence, the total derivative can be expressed as:

dJ (F ,u)

dF =
∂J (F ,u)

∂F −ψT ∂R(F ,u)

∂F . (20)

For a primal solution uh ∈ X̃h, the adjoint solution vector ψh ∈ X̃h is represented by:

N′
h[uh](yh,ψh) = J ′

h[uh](yh) ∀yh ∈ X̃h, (21)

where N′
h[xh] and J ′

h[xh] denote the linearizations of Nh and Jh with respect to xh. Within the
HDG framework, the discrete adjoint solution is implemented for error estimation and mesh adaptation.
To prevent error estimates from vanishing identically, the adjoint solution is computed in a richer space.
Thus, the space X̃h is defined with a polynomial order of p+ 1.

The partial derivative terms on the right-hand side of Equation (20) are calculated using finite
differences:

∂J (F ,u)

∂F =
J (F + δF ,u)− J (F ,u)

δF , (22)

∂R(F ,u)

∂F =
R(F + δF ,u)−R(F ,u)

δF . (23)

No additional flow solution is required to calculate these partial derivatives. The design variable and
mesh are deformed by a small perturbation δF , and the solution is reconstructed on this deformed mesh
to evaluate the perturbed objective function and its residuals.

5 Mesh Adaptation and Error Estimation
Owing to the necessity of accurately computing the objective function and its gradient, adaptive meshes
offer a compelling approach. Mesh adaptation refines the domain in areas that significantly impact
the calculation of the objective function. Adjoint-based error estimates provide indicators for error
distribution within the domain. Within the optimization context, the adjoint solution, which is already
available for calculating gradients, can be leveraged for mesh adaptation. This use of the adjoint solution
makes adjoint-based error estimates particularly advantageous in optimization processes.

5.1 Adjoint-based Error Estimation
Consider the functional Jh representing the objective function for shape optimization. To frame adjoint-
based error estimation for Jh, consider the error in this quantity,

eh := Jh(u)− Jh(uh). (24)
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For the derivation of the adjoint-based error estimate, we expand the target functional in a Taylor
series:

Jh(u)− Jh(uh) = J ′
h[uh]δuh +O(∥δuh∥2), (25)

where δuh := u− uh, uh ∈ X̃ represents the numerical solution, and u represents the actual solution.
We proceed similarly with the error in the residual:

Nh(u;yh)−Nh(uh;yh) = N ′
h[uh](δuh;yh) +O(∥δuh∥2). (26)

Since our discretization is consistent, the first term Nh(u;yh) vanishes. Substituting the above equation
into the error expression and neglecting quadratic terms yields:

eh ≈ η := −Nh(uh;ψh), (27)

where ψh is defined by the adjoint equation:

N ′
h[uh](yh;ψh) = J ′

h[uh](yh) ∀yh ∈ X̃h. (28)

The adjoint solution ψh ∈ X̃h provides the connection between variations in the residual and the
target functional. The global error estimate η can be localized to individual elements to yield local
indicators for driving an adaptation procedure:

ηK := ∥Nh(uh;ψh)∥K . (29)

It is crucial that the functionals Nh and Jh and their Jacobians be evaluated in a space richer than Xh,
specifically X̃h ⊃ Xh. Otherwise, the weighted residual Nh(uh;ψh) would be zero because:

Nh(uh;yh) = 0 ∀uh ∈ Xh. (30)

This requirement can be satisfied either through mesh refinement or by increasing the polynomial degree
of the ansatz functions. In our setting, the latter approach is more advantageous in terms of implemen-
tation effort.

5.2 Mesh Adaptation Strategy
For our study, we employ the goal-oriented anisotropic mesh adaptation strategy proposed by Rangarajan[31].
This method is based on a novel output-based mesh adaptation approach that incorporates adjoint-based
error estimates within the continuous mesh model framework. This strategy effectively refines the mesh
in regions where high accuracy is required, thereby optimizing computational resources and improv-
ing the overall solution quality. We direct interested readers to the original work by Rangarajan for a
comprehensive explanation and implementation details [31].

6 Results and Discussion

6.1 Drag minimization case
AIAA’s Aerodynamic Design Optimization Discussion Group (ADODG) has laid down a set of bench-
mark problems [34] to help evaluate the utility of optimization methods and processes. The first problem
is the inviscid transonic drag minimization problem, which is subjected to geometric constraints. Here,
the optimization searches the design space starting from a modified NACA0012 airfoil with a zero thick-
ness trailing edge. A geometric constraint is imposed that restricts the final thickness of the airfoil to
be more than the baseline geometry’s thickness. The airfoil is subjected to an inviscid flow at a Mach
number of 0.85 at an angle of attack (α) of zero degrees. It is a zero-lifting airfoil. Mathematically, the
problem can be formulated as,

minimize
F

Cd(F ,u)

subject to y ≥ ybaseline,
(31)

Where y indicates the thickness of the airfoil.
Since the flow is inviscid and transonic, the governing equations are the 2D compressible Euler

equations. In the form of the standard conservation laws (4), the flow variables and fluxes for these
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equations can be written as:

u =


ρ
ρu
ρv
E

 , f = f c


ρu ρv
ρu2 ρuv
ρuv ρv2

u(E + p) v(E + p)

 , (32)

Where ρ is the density, u is the x-velocity, v is the y-velocity, E is the total energy and p is the pressure.
We use the state equation relating pressure and Energy to close the above system of equations.

p = (γ − 1)

(
E − 1

2
ρ(u2 + v2)

)
, (33)

where γ is the ratio of specific heat capacities.
The HDG framework utilizes Netgen, an open-source geometry and mesh generation tool part of the

finite element package NGSolve. Netgen represents 2D geometries using piecewise rational quadratic
splines. In our study, we represent the airfoil as a set of points, which we then close using these splines.
We impose first-order continuity at each point, except at the endpoints where we apply second-order
continuity or a ’natural’ boundary condition. We use the points defining the splines as design points,
allowing them to move in a direction normal to the geometry in the 2D plane. Owing to the symmetry
of the problem, we only consider the upper half of the airfoil points as the design points and replicate the
mirror value to obtain the lower surface. Figure (1) describes the spline and the points used to define it.

Figure 1: Spline geometry

p⃗(θ) =
(1− θ)2p⃗i + 2wθ(1− θ)p⃗t + θ2p⃗f

(1− θ)2 + 2wθ(1− θ) + θ2

w =
∥p⃗f − p⃗i∥√

0.5(∥p⃗f − p⃗t∥2 + ∥p⃗t − p⃗i∥2)
(34)

As the geometry changes, the mesh must be correspondingly deformed. We achieve this through
an interpolation-based mesh deformation strategy. For the detailed implementation of this strategy, we
refer to [36].

Figure (2) compares the initial airfoil and the optimized airfoil. The markers on the geometry repre-
sent the design variables. The leading edge develops a bluntness, and the geometry constraint is satisfied
at every design point. Figure (3) shows the objective convergence over more than 550 optimization
iterations. The initial geometry had a drag coefficient value of 435.8 drag count (dc), where 1 drag count
= 0.0001. The optimized design has a drag coefficient of 121.4 dc.

Figure 2: Initial and optimized geometries

Figure (4) shows the coefficient of pressure on initial and optimized airfoils. Figure (5) and Figure (6)
show the plot of Mach number on the initial and final design, respectively. The initial geometry shows
a strong shock at a location extending towards the trailing edge. Owing to the thickness constraint, the
optimized geometry is a thick airfoil with a flat surface. The optimized airfoil shows two shock features:
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a strong shock is evident near the leading edge, while a weaker shock is observed near the trailing edge.
The results are comparable to those obtained by other authors for the same case.

0 50 100 150 200 250 300 350 400 450 500
Flow solutions

0.015

0.020

0.025

0.030

0.035

0.040

0.045

J
=
C

d

Initial = 435.8 dc

Final = 121.4 dc

Drag Coefficient

Figure 3: Objective convergence his-
tory

0.0 0.2 0.4 0.6 0.8 1.0
x

−1.0

−0.5

0.0

0.5

1.0

C
p

Cp on Initial
(NACA0012) airfoil
Cp on Final
airfoil

Figure 4: Pressure coefficient distri-
bution on initial and final geometry

Figure 5: Mach number distribution on
the initial geometry

Figure 6: Mach number distribution on
the final geometry

6.2 Inverse Design case
We consider an inverse design problem to analyze the impact of adaptive meshes on optimization con-
vergence. In this scenario, the design variable is the angle of attack. A NACA0012 airfoil is subjected
to inviscid transonic flow at a Mach number 0.8. The target pressure coefficient is specified at an angle
of attack of two degrees. The objective of the optimization problem is to adjust the angle of attack
to achieve the desired value of two degrees, starting from an arbitrary initial angle of attack. For this
study, the initial angle of attack is set to zero degrees. Compressible Euler equations are the governing
equations.

The objective function is defined as follows:

J =

∫
airfoil

(Cp,target(x)− Cp(x))
2 dx. (35)

The pressure coefficient is defined as:

Cp(x) =
p(x)− p∞
1
2ρ∞V 2

∞
, (36)

where x is the coordinate along the chord. In this expression, p(x) is the local pressure at the surface of
the airfoil, while p∞, ρ∞, and V∞ are the far-field pressure, density, and velocity, respectively.

A fine mesh with 233,472 elements is employed to obtain the target pressure distribution. The
Hybridized Discontinuous Galerkin (HDG) solver is used with a polynomial order of two. Figure (7)
shows the target Cp,target distribution.

Optimization starts with an initial angle of attack of zero degrees. The gradient of the objective
function with respect to the angle of attack, is calculated using the adjoint method:
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Figure 7: Target value of the coefficient of pressure Cp,target obtained by solving the flow on a NACA0012
airfoil at Mach 0.8 and α = 2 using a fine mesh with 233472 mesh elements

dJ (α,u)

dα
=

J (α+ δα,u)− J (α,u)

δα
−ψT R(α+ δα,u)−R(α,u)

δα
, (37)

We use finite differences similar to equations (22) and (23) to calculate the partial derivatives on
the right-hand side of the above equation. For calculating J (α + δα,u) and R(α + δα,u), a new flow
solution is not calculated. Instead, the geometry is tilted by the amount δα, and the mesh is deformed
accordingly. The older solution is reconstructed on this tilted mesh and geometry, and the perturbed
objective function and residuals are recalculated. We use an interpolation-based approach similar to [36]
for mesh deformation.

6.2.1 Comparison between optimized results for coarse and fine discretization

To understand the impact of mesh quality on the optimized result, we solve the aforementioned opti-
mization problem using a coarse and a fine meshes. The coarse mesh comprises 438 elements, while the
fine mesh comprises 40,960. The flow is solved using a polynomial order of two. For an initial angle of
attack, α, of zero degrees, Figures (8) and (9) shows the Mach number distribution.

Using these meshes, we run the optimizer, and the evolution of the angle of attack with respect to
optimization iterations is shown in Figure (10). The target α, represented by the dashed blue line, is
two degrees. For the fine mesh, the angle of attack converged to a value very close to the target value.
Conversely, α converged to 1.828 degrees for the coarse mesh, which is not as close to the target value.
The non-convergence observed in the coarse mesh can be attributed to its inability to resolve the flow
solution adequately. Figure (11) shows the plot of coefficient of pressure for the target configuration and
the optimal design values obtained using fine and coarse mesh. The fine mesh plot almost aligns with
the target plot. While we can see diffusion of shock for the plot corresponding to the coarse mesh.

Figure 8: Mach number distribution on
the coarse mesh

Figure 9: Mach number distribution on
the fine mesh

The comparison clearly illustrates that the choice of mesh significantly influences the optimization
results. With its higher resolution, the fine mesh provides a more accurate flow solution, leading to
better convergence of both the design variable and the objective function. In contrast, the coarse mesh
fails to capture critical flow features, resulting in suboptimal convergence. Controlling the error through
finer discretization can improve the accuracy and reliability of the optimization process.
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Figure 10: Evolution of the design vari-
able α for coarse and fine mesh
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6.2.2 Optimization Using Adapted Meshes

Previous results highlight the influence of discretization errors on the outcomes of shape optimization.
Here, we present results using adapted meshes instead of a fine mesh for optimization.

Mesh adaptation is guided by error estimates in the target functional, calculated using the adjoint
method. The objective function of optimization is typically a suitable candidate for mesh adaptation.
However, in the case of inverse design, the objective function diminishes as it approaches its target
value. Therefore, we define the target functional for mesh adaptation as the integral of the square of the
coefficient of pressure:

Jadapt =

∫
Ω
Cp(x)

2 dx. (38)

The optimization begins with an initial angle of attack α = 0 degrees. Initially, a very coarse mesh
consisting of 438 elements is employed. The optimizer converges to an angle of attack α = 1.828 degrees,
which deviates from the target value of 2 degrees. To address this, the mesh is adapted at α = 0 while
maintaining a fixed number of degrees of freedom, focusing on reorienting elements to better capture
flow characteristics. This adaptation results in a modified mesh, depicted in Figure (12), composed of
370 elements.

Figure 12: Mach number plot on the
adapted mesh for α = 0
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Figure 13: Evolution of the design vari-
able α for coarse and adapted meshes

Figure (13) compares the evolution of α during optimization iterations between the coarse mesh
and the adapted mesh for α = 0. The adapted mesh demonstrates convergence towards α = 1.944
degrees, closer to the target value compared to the coarse mesh but still not achieving it. However, as
α increases, the adaptation designed for α = 0 becomes less effective in reducing errors, highlighting the
need for multiple adapted meshes in optimization. Subsequently, the mesh is adapted a second time for
α = 1.944, resulting in a slight increase in the number of elements to 553. Using this further adapted
mesh, optimization proceeds and converges closely to the target value, illustrated in Figure (14). The
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distribution of Cp for this optimal α compared to the target value is shown in Figure (15).
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Figure 14: Evolution of the design vari-
able α using multiple adapted meshes

0.0 0.2 0.4 0.6 0.8 1.0
x

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

C
p

Target Cp

Adapted mesh with ne = 370 at α = 1.944

Adapted mesh with ne = 553 at α = 2.001

Figure 15: Cp plot on the upper surface
of the airfoil

6.3 Summary and future work
This paper implements a shape optimization module within a Hybridized Discontinuous Galerkin (HDG)
solver, utilizing adapted meshes to control discretization errors. We apply shape optimization to solve the
ADODG benchmark case-1 and demonstrate the necessity of using adapted meshes through an inverse
design test case. Due to variations in the flow field throughout the optimization cycle, a single adapted
mesh becomes inadequate for effectively capturing changed flow features. This necessitates multiple
mesh adaptations within optimization cycles. However, using adapted meshes introduces additional
computational costs associated with generating the adapted meshes. Therefore, adapting the mesh at
every iteration is not computationally viable. Consequently, strategies must be devised to automatically
determine optimal instances within the optimization cycle for implementing mesh adaptation. A few
such strategies are explored in the literature [21, 22, 25]. For future research, we intend to develop
a strategy to decide over adaptation and shape optimization utilizing the mesh adaptation algorithm
proposed by Rangarajan et al. [31] within the HDG framework.
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