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Abstract: Anisotropic meshes can simulate flows around aerospace vehicles more efficiently than
isotropic meshes, as these flows are typically dominated by anisotropic features such as boundary
layers and shocks. Metric field based methods provide a convenient framework for generating
and manipulating anisotropic triangular meshes. The present work extends metric field based
mesh adaptation for quad-dominant meshes for high-order Discontinuous Galerkin (DG) methods.
Quads can better align the cell interfaces with shocks and boundary layers than triangular mesh,
providing better accuracy than triangles for similar degrees of freedom. The solver used in the
present study solves the governing equations on quad-dominant meshes. At a given adaptation
cycle, the optimum metric field derived analytically is evaluated on the quad-dominant mesh.
This metric field and the mesh obtained after splitting the quads into triangles are passed to a
metric-conforming mesh generator to get the adapted triangular mesh. The triangular mesh is
then recombined using the Blossom-Quad algorithm to get the adapted quad-dominant mesh. The
blossom-quad algorithm based on perfect matching combines suitable triangles to give good quality
quads. The entire framework is tested for scalar-advection diffusion test case and turbulent flow
over a flat plate. The results show an optimum order of error convergence even on coarse meshes
for the scalar case and faster drag convergence for the turbulent flat plate case.
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1 Introduction
According to the widely cited NASA’s CFD Vision 2030 report, [1], mesh generation and adaptivity are
significant bottlenecks in the current CFD workflow. Flows around aerospace vehicles often consist of
complex phenomena at various length scales, such as boundary layers, shock waves, shock-boundary layer
interactions, flow separation, etc. All flow features that affect the output must be resolved to obtain
accurate functional output quantities like drag or lift. Uniformly refining the mesh is computationally
expensive and impractical for flows around complex geometries. Mesh refinements based on some heuris-
tics, such as refining regions with high gradients, offer an advantage over uniform refinement in terms of
computational cost, but they may result in highly inaccurate solutions [2]. Manually generating meshes
that are aligned with flow features such as shock waves or boundary layers is labor-intensive and only
possible for simple test cases where the location of flow features is known a priori.

Realistic flows around aerospace vehicles often involve various anisotropic phenomena, which can be
efficiently resolved through anisotropic mesh adaptation. Metric field based mesh adaptation provides a
solid mathematical framework for anisotropic mesh adaptation [3]. The metric field embeds all informa-
tion about simplicial (triangles in 2D and tetrahedras in 3D) mesh elements, i.e., their size, aspect ratio,
and orientation. Hecht and Mohammad [4] showed that constructing a unit mesh in a given Riemannian
metric space results in an anisotropic mesh in classical Euclidean space. Metric field based mesh adap-
tation has proven robust for 2D and 3D steady-state CFD simulations, generating highly anisotropic
meshes around strong shocks and within the boundary layers [5]. Loseille et al. [6, 7] provide a detailed
derivation of metric field based mesh adaptation for second-order finite volume methods. A great deal of
metric field based mesh adaptation framework for second-order finite volume methods can be found in
[8, 9, 10, 11 and 12]. High-order methods such as Discontinuous Galerkin (DG) offer superior accuracy
compared to lower-order finite-volume methods at similar DoF, demonstrating exponential convergence
in regions of smooth solutions. Dolejsi [13] derived a comprehensive framework for deriving metric fields
for high-order hp-adaptive methods by minimizing interpolation error in Lq-norm. A detailed work on
deriving metric fields for high-order methods can be found in [14, 15, 16, 17, 18, 19 and 20].
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The methods mentioned above for deriving metric fields are robust and reliable for generating highly
anisotropic unstructured meshes using simplicial elements near areas with shocks and boundary layers.
However, the misalignment of mesh interfaces with shocks, boundary layers, and large dihedral angles
negatively impacts solver stability and convergence speed, particularly for finite volume methods [21].
Candler et al. [22] demonstrated that such misalignment leads to significant entropy errors, propagating
downstream and causing poor solution prediction near the body surface, and in some cases, resulting
in carbuncle formation. On the other hand, a structured mesh (quads in 2D and hexahedra in 3D) can
perfectly align with flow features, leading to faster numerical solvers and greater robustness. However,
generating a structured mesh becomes challenging for complex geometries. A good compromise between
structured and unstructured mesh is a hybrid mesh. A hybrid mesh featuring quads/hexes in the bound-
ary layer and around shocks and triangles/tetrahedra elsewhere combines the advantages of structured
mesh’s high accuracy and robustness with the flexibility of mesh generation and adaptation found in
unstructured meshes.

A widely used approach to generate nearly structured meshes within boundary layers and shock
waves involves creating quasi-structured meshes with right-angled triangles in the regions exhibiting high
anisotropy. These right-angled triangles are then combined into quads to create structured elements of
high quality. Studies like [23, 24, 25, 26 and 27] have proven to be robust for generating quasi-structured
meshes. In the present paper, we combine the mesh adaptation framework of [15] with the Blossom-Quad
algorithm [28] to generate adapted quad-dominant meshes. Blossom-quad is an algorithm from the graph
theory that computes the minimum cost perfect matching in a graph in polynomial time. This results
in a combination of suitable triangles to get the most optimal quads of good quality. The methodology
is validated with simple analytical test cases and turbulent flow over a flat plate.

The paper is organized as follows. Section 2 describes the metric-based mesh adaptation framework
with a suitable error model and global optimization. Section 3 details the numerical test cases, and
section 4 presents conclusions and future work.

2 Metric field based mesh Adaptation

2.1 Continuous mesh Model
Let Th = {κ} be a triangulation of some computational domain Ω ⊂ R2. Let vectors ek, for k = 1, 2, 3,
denote the edges of the triangle. Then, for any nondegenerate triangle, there is a unique symmetric
positive-definite matrix

M =

(
m11 m12

m12 m22

)
such that, for a given constant C > 0.

eTkMek = C, k = 1, 2, 3 (1)

Here, M is the (implied) metric tensor. The triangle is thus equilateral in the norm induced by the
metric. A triangle that satisfies Eq. 1 and C = 3 can be inscribed in an ellipse E, with the ellipse’s
origin coinciding with the triangle’s centroid, as shown in Fig. 1, is called a unit triangle. The spectral
decomposition of M gives,

M = QEΛQ
T
E =

(
cos θ − sin θ
sin θ cos θ

)(
λ1 0
0 λ2

)(
cos θ − sin θ
sin θ cos θ

)T

(2)

where QE is an orthogonal matrix whose columns are eigenvectors of M, and Λ is a diagonal matrix
containing eigenvalues of M. The angle θ is the angle made by the major axis of E, with the positive
x-axis as shown in Fig. 1. The relation between eigenvalues of M and the axis of an ellipse E, is λi =

1
h2
i
,

where h1 and h2 are the lengths of semi-minor and the major axis of ellipse respectively.
Using the duality between the ellipse E, and the inscribed unit triangle κ, we get the area of the

triangle as,

|κ| = 3
√
3

4
h1h2 =

3
√
3

4

1

d
(3)
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Figure 1: Choosing C = 3 in Eq. 1, a unit triangle w.r.t. M is inscribed in the ellipse E := {x ∈ R2 :
xTMx ≤ 1}

where the local density is defined as d =
√
λ1λ2 = 1

h1h2
=
√
det(M). The aspect ratio of κ is defined as,

β =

√
λ1

λ2
=

h2

h1
≥ 1 (4)

Hence, a metric M can be defined by its anisotropy (β, θ) and its density (d). Thus, we can find a
desired triangle by finding a metric with desired parameters (d, β, θ). A suitable error model is used to
find a new discrete metric field. A metric-based mesh generator operates on a continuous metric field
(M(x))x∈Ω, which may be generated by a suitable interpolation of the new discrete metric field. Such
a mesh generator will try to ensure that all edges of the triangulation are unit length w.r.t. to the new
metric field. The length of a segment e = x2 −x1 under the metric M(x) is defined using a straight line
parameterization,

||e||M =

∫ 1

0

√
eTM(x1 + se)e ds (5)

Practically a mesh generator tries to ensure ||e||2M ≈ C in a least square sense. Hence, a discrete mesh
is a snapshot of a continuous mesh, represented by a metric field M(x).

2.2 Error Model
From the previous section, it is evident that we can describe a local metric M, corresponding to a
triangle κ, by the tuple (dκ, βκ, θκ)κ∈Th

. Thus, we need to construct a suitable error model that gives
us the desired (dκ, βκ, θκ) based on the solution behavior in the domain. The error model minimizes the
interpolation error in an approximation space given by,

Vh,p = {v : v|κ ∈ Pp(κ),∀κ ∈ Th}, (6)

where Pp is the space of polynomials of total degree at most p. If a pth order polynomial is used to
approximate the solution in a domian Ω, then the interpolation error is dominated by the (p+1)st term
of the taylor series expansion. For a sufficiently smooth function u, at a point x = (x1, x2)

T ∈ Ω, and a
polynomial degree p, the interpolation error ex,p(y) is given as,

|ex,p(y)| ≈
1

(p+ 1)!
|up+1,ϕ(x)||y − x|p+1, ∀y ∈ Ω (7)

where, u(k,ϕ) is a directional derivative of order k, defined as,

u(k,ϕ)(x) =

k∑
l=0

(
k

l

)
∂ku(x)

∂xl
1∂x

k−l
2

(cosϕ)l(sinϕ)k−l, ϕ ∈ [0, 2π) (8)

To develop a suitable error model, we must approximate the error given by Eq. 7 by a 2×2 symmetric
positive-definite matrix with only three unknowns. For p = 1, the metric would correspond to the hessian
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of the solution variable, while for p > 1, there are increasingly many derivatives of order p+ 1, resulting
in an overdetermined system. Dolejsi [13] derived a detailed framework, where the interpolation error
given by Eq. 7 is bounded using three parameters (Ap, ρp, ϕp), such that for any x ∈ Ω, we have

|ex,p(y)| ≲ Ap

(
(y − x)TQϕpDρpQ

T
ϕp
(y − x)

) p+1
2

, ∀y ∈ Ω (9)

where,

Qϕp =

(
cosϕp − sinϕp

sinϕp cosϕp

)
, Dρp =

(
1 0

0 ρ
− 2

p+1
p

)
and

Ap ≡ Ap(x) =
1

(p+ 1)!
|u(p+1,ϕp)(x)|

ϕp ≡ ϕp(x) := arg max
ϕ∈[0,2π)

|u(p+1,ϕ)(x)| (10)

Let ϕ⊥
p be the direction orthogonal to ϕp. Then, setting A⊥

p := |u(p+1,ϕ⊥
p )(x)|, we get

ρp ≡ ρp(x) :=
Ap(x)

A⊥
p (x)

(11)

It can be shown analytically that the bound given by Eq. 9 is guaranteed for p = 1, whereas for
higher p, it is not guaranteed if the coefficients (Ap, ρp) are defined as in Eqs. 10 and 11. A numerical
modification of the coefficients has been proposed in [13] to make the inequality in Eq. 9 safe (and sharp).
However, we do not use this modification here because the benefit appears masked by other sources of
error, such as the approximation of the higher-order derivatives. For a given area ν of the ellipse, we
can determine the desired anisotropy parameters (β, θ) by minimizing the Lq-norm of the interpolation
error given by Eq. 9 over an ellipse E

||ex,p||Lq(E∗) = min
|E|=ν

||ex,p||Lq(E) (12)

The minimum is derived in [13] as,

||ex,p||Lq(E∗) ≲ cp,qApρ
− 1

2
p ν

p+1
2 + 1

q ,

cqp,q =
2

q(p+ 1) + 2
π

−q(p+1)
2 (13)

The optimum is achieved for β = ρ
1

p+1 and θ = ϕp − π
2 . The anisotropy parameters (β, θ) are thus

eliminated and replaced by the higher derivatives of u via the parameters (Ap, ρp). Having fixed the
optimized anisotropy, the size ν of the ellipse is still a free parameter. We use the global optimization
approach of Rangarajan et al. [15] to get the optimum size distribution.

2.3 Global Optimization
Rangarajan et al. [15] proposed a continuous interpolation operator,

|eν |(x) := cp,qApρ
− 1

2
p ν

p+1
2 (14)

where the subscript ν indicates that the error still depends on area of ellipse. Combining Eqs. 13 and
14, we get

||ex,p||qLq(E∗) ≲ eν(x)
qν(x) (15)

For a triangle κ, centered at xκ, which is unit with respect to the metric Mν , implied by the present
(locally optimal) anisotropy and some arbitrary size ν. Then, ||exκ,p||Lq(κ) ≲ ||exκ,p||Lq(E∗) with a
constant that depends on the constant C in Eq. 1. Defining the interpolation operator πh by a piecewise
Taylor series, centered at each element centroid (i.e., πh|κ = πxκ,p, where πxκ,p represents the Taylor
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series of order p), one has

||u− πhu||qLq(Ω) =
∑
κ∈Th

||u− πxκ,pu||
q
Lq(κ) ≲

∑
κ∈Th

||e(xκ, p)||qLq(κ) ≲
∑
κ∈Th

eν(xκ)
qν(x) (16)

where the last term can be thought of approximating the integral∑
κ∈Th

eν(xκ)
qν(x) ∼

∑
κ∈Th

eν(xκ)
q|κ| →

∫
Ω

eν(xκ)
q dx, (h → 0) (17)

The right-hand side of Eq. 17 defines our continuous mesh error model, which is thus seen to
be asymptotically consistent with the error estimates derived in this section. The main advantage of
representing the error model in a continuous form is that we can use powerful mathematical tools like
calculus of variation to derive the distribution of element sizes analytically, given the number of elements
as a constraint. Substituting ν = πh1h2 = π/d, we can rewrite error model from Eq. 14 in terms of
continuous mesh density, d ≡ d(x) as

|ed|(x) =
(

2

q(p+ 1) + 2

)1/q

Apρ
− 1

2
p d−

(p+1)
2 (18)

Defining

EM :=

∫
Ω

|ed|q dx =

∫
Ω

(
2

q(p+ 1) + 2

)(
Apρ

− 1
2

p

)q
d−

q(p+1)
2 dx (19)

we now consider the following constrained optimization problem:

d⋆ = argmin
d

EM, such that, N =

∫
Ω

d dx (20)

Using the calculus of variations leads to the optimality condition,

δEM = −
(

q(p+ 1)

q(p+ 1) + 2

)∫
Ω

(
Apρ

− 1
2

p

)q
d−

q(p+1)+2
2 δd dx = 0 (21)

Taking a variation of the constraint equation (20), we have

δN =

∫
Ω

δd dx = 0 (22)

Hence, an admissible solution to Eq. 21 is given by(
Apρ

− 1
2

p

)q
d−

q(p+1)+2
2 = const (23)

Solving for d from Eq. 23 and substituting the result into the constraint Eq. 20, we get,

d⋆(x) = K
(
Ap(x)ρp(x)

− 1
2

) 2q
q(p+1)+2

(24)

where
K =

N∫
Ω

(
Apρ

− 1
2

p

) 2q
q(p+1)+2

dx

(25)

Substituting Eq. 25 into Eq. 24, we get the optimum density (d⋆) as,

d⋆(x) =
N
(
Apρ

− 1
2

p

) 2q
q(p+1)+2

∫
Ω

(
Apρ

− 1
2

p

) 2q
q(p+1)+2

dx

(26)

The advantage of the above approach is that the only parameter to be set by the user is N , which is
a continuous mesh equivalent to the total number of elements (nh) in a triangulation (Th), of the domain
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(Ω). In practical computations, the density (d) is computed as cell-wise constants only. Thus, Eq. 3 can
be used to approximate N as follows:

N =

∫
Ω

d dx ≈
∑
κ∈Th

∫
κ

dκ dx =
∑
κ∈Th

dκ

∫
κ

dx =
∑
κ∈Th

dκ|κ| =
∑
κ∈Th

3
√
3

4
≈ 3

√
3

4
nh (27)

Hence, one adaptation step consists of the following.

1. Compute the numerical solution of order p on a current quad-dominant mesh using any numerical
method. Here, we have used the Hybridized Discontinuous Galerkin (HDG) method.

2. Calculate the directional derivatives of order p+ 1 from the current numerical solution. Compute
the corresponding new anisotropy (βκ, θκ)κ∈Th

in the form of (Ap, ρp).

3. Determine the new density of the mesh elements dκ = d⋆(xκ) for the desired mesh using Eq. 26.
Calculate the new metric (Mκ)κ∈Th

from (Ap, ρp, d).

4. Split the quads of the current quad-dominant mesh to get a fully triangular mesh because a metric
field based mesh generator works only on a triangular mesh.

5. This fully triangular mesh with the new metric (Mκ)κ∈Th
at its vertices are given as input to the

metric field based mesh generator, which gives a new adapted triangular mesh. We have used
BAMG [29] as a 2D mesh generator.

6. Use Blossom-Quad [28] algorithm to recombine triangles of new adapted mesh into quads to get an
adapted quad-dominant mesh. This new quad-dominant mesh is used for the next computation.

3 Numerical Results
An in-house HDG solver has been used to carry out numerical simulations. The development of the
solver was started by Woopen et al. [30], and the details regarding hybridization are given in [31].
The discretized nonlinear system resulting from HDG discretization is solved using the Newton-Raphson
method. The linear subproblems from Newton-Raphson’s method are solved using a restarted General-
ized minimum residual method (GMRES) with Incomplete LU preconditioning.

3.1 Scalar Advection - Diffusion Test Case
Consider a scalar advection-diffusion equation with advection coefficient, β = (1, 1)T , and diffusion
coefficient ϵ = 0.01,

β · ∇u− ϵ∇2u = s, (x, y) ∈ Ω = (0, 1)2, ϵ > 0

u = 0, (x, y) ∈ ∂Ω (28)

Using method of manufactured solution, the source term s is set such that the exact solution u(x, y) is
given by,

u(x, y) =

(
x+

ex/ϵ − 1

1− e1/ϵ

)(
y +

ey/ϵ − 1

1− e1/ϵ

)
(29)

The solution u exhibits a very strong boundary layer near x = 1 and y = 1. The smaller the diffusion
coefficient (ϵ), the sharper the boundary layer. We solve Eq. 28 numerically, and assess the performance
of the mesh adaptation framework based on the error between the numerical solution (uh) and the exact
solution (u), given by Eq. 29. We start with an initial coarse mesh with nh = 256 elements, polynomial
order p = 2, and DoF = 1440. Fig. 2 shows the initial coarse mesh and the contour plot of the numerical
solution. As seen from the contour plot, the initial mesh does not resolve the boundary layer accurately
at the domain’s top-right corner while the variation is captured accurately in the bottom-left region,
where the solution varies almost quadratically. The L2-norm of the exact error (||u − uh||L2(Ω)) on the
initial mesh is 1.93 × 10−2. The mesh is adapted by minimizing the interpolation error in the exact
solution, i.e., using (|ex,p(y)| = |u − uh|) in Eq. 7. We obtain an adapted quad-dominant mesh at a
given complexity N defined by Eq. 20. Fig. 3 shows the adapted quad-dominant mesh and the contour
plot of the numerical solution with nh = 276 elements, polynomial order p = 2, and DoF = 1479. As
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seen from Fig. 3, mesh elements are refined and highly anisotropic in the top-right corner of the domain,
resolving the boundary layer accurately. Meanwhile, far away from the boundary layer, the elements are
coarsened because a quadratically varying solution can be captured accurately even on coarse elements
using p = 2 polynomial order. The L2-norm of an exact error on an adapted mesh is 4.03× 10−5, which
is three orders of magnitude less than the error on the initial mesh for almost the same DoF.

(a) (b)

Figure 2: Scalar Advection - Diffusion test case: (a) Initial mesh (nh = 256, DoF = 1440, p = 2), (b)
Contour plot of the numerical solution, ||u− uh||L2(Ω) = 1.93× 10−2

(a) (b)

Figure 3: Scalar Advection - Diffusion test case: (a) Adapted quad-dominant mesh (nh = 276, DoF =
1479, p = 2), (b) Contour plot of the numerical solution, ||u− uh||L2(Ω) = 4.03× 10−5

Fig. 4 shows the variation of L2-norm of exact error w.r.t. indicative mesh size (h ≡ 1/
√
DoF ) for

p = 2, 3 and 4. As expected, increasing polynomial order results in a lower error at the same DoF. The
figure shows that the error for adapted mesh is much lower than for uniform refinement case for p = 2.
Many sub-iterations for mesh adaptation are performed for a given N . When the L2-norm of exact error
between three subsequent sub-iterations did not vary much, N is increased by 30%, and the same process
is repeated. Thus, all the data points plotted in Fig. 4 correspond to the last adapted mesh for a given
N , except the very first data point, which corresponds to the error on an initial coarse mesh. A mesh
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adaptation cycle typically consists of many such sub-iterations at increasing values of N . As seen from
the figure, we achieve early optimum order of error convergence of order p+ 1, even on large mesh sizes
h, because of the equidistribution of error across all the mesh elements. Fig. 5 shows the variation of
L2-norm of exact error over all the mesh elements (κ). The error varies fourteen orders of magnitude
across the elements of the initial mesh. The lower errors (∼ 10−16) correspond to the elements at the
domain’s bottom-left corner. The higher errors (∼ 10−2) correspond to the elements in the top-right
corner of the domain where the solution exhibits high variations. As the mesh adaptation cycle proceeds,
the elements are refined and arranged in an anisotropic manner in the top-right corner of the domain
at the expense of coarsening the elements elsewhere. This results in an almost equidistribution of the
errors across the domain in just five adaptations. Thus, the mesh adaptation framework results in the
most optimum mesh for a given complexity N .

10−3 2× 10−3 5× 10−3 10−2 2.5× 10−2

10−11

10−9

10−7

10−5

10−3

10−1

h ≡ 1/
√
DoF

||u
−
u
h
|| L

2
(Ω

)

Uni-Ref (p = 2)

p = 2

Slope = 3

p = 3

Slope = 4

p = 4

Slope = 5

Figure 4: Scalar Advection - Diffusion test case: convergence of L2-norm of exact error w.r.t indicative
mesh size (h) for various polynomial orders

0 50 100 150 200 250 300
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

Cell Number

||u
−

u
h
|| L

2
(κ

)

Adap0, nh = 256

Adap1, nh = 240

Adap2, nh = 238

Adap3, nh = 276

Adap4, nh = 257

Adap5, nh = 271

Figure 5: Scalar Advection - Diffusion test case: equidistribution of L2-norm of elemental errors for
various adaptation cycles for p = 2 at a given complexity N
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3.2 Turbulent flow over a flat plate
We consider a subsonic flow past a zero pressure gradient flat plate with freestream Mach number of
M∞ = 0.2 and Reynolds number Re = 5 × 106 based on unit length. The length of the plate is two
units from x = 0 to x = 2. This test case is well documented on NASA’s Turbulence Modeling Resource
(TMR) website. Riemann invariant inflow and outflow boundary conditions are prescribed in the left and
right boundaries. The top boundary is considered as far-field. The bottom boundary initially consists of
a symmetry condition followed by an adiabatic wall from x = 0 to x = 2. One-equation Spalart-Allmaras
(SA) model is used for turbulence modeling with the SA working variable ν/ν∞ = 3.

We start from a coarse mesh with 311 elements, p = 2 and DoF = 1689. Fig. 6 shows the mach
contour on an initial mesh with an unresolved boundary layer. The mesh is adapted multiple times based
on the interpolation error in Mach number, and we get a final adapted quad-dominant mesh with 8235
elements and DoF = 41187. Fig. 7 shows the adapted mesh, having a sufficiently resolved boundary
layer and leading edge singularity at x = 0. From the zoomed-in mesh, it is seen that elements are highly
anisotropic within the boundary layer and coarse and isotropic elsewhere.

Figure 6: Turbulent flow over a flat plate: initial mesh and Mach contour (nh = 311, DoF = 1689,
p = 2)

(a) (b)

Figure 7: Turbulent flow over a flat plate: (a) Adapted quad-dominant mesh (nh = 8235, DoF = 41187,
p = 2), (b) zoomed-in adapted mesh

We compare the skin friction coefficient (Cf ) that is calculated on an adapted mesh with the results
from two finite volume solvers, CFL3D and FUN3D, available on the TMR website. Fig. 8 shows the
variation of Cf over the flat plate for the adapted mesh and results from CFL3D and FUN3D. The
adapted quad-dominant mesh has DoF = 41187, while the reference data from CFL3D and FUN3D has
DoF = 208896. All three results nicely overlap each other, signifying that the adapted mesh achieves
almost similar boundary layer resolution with much less DoF. Drag convergence study was performed
on the adapted meshes, and the results were compared with that of CFL3D and FUN3D. Fig. 9 shows
the convergence of Cd w.r.t DoF. It is observed that for CFL3D, drag convergence is achieved at around
200000 DoF, while with mesh adaptation, drag convergence is achieved much earlier (around 22000 DoF),
which is a huge advantage in terms of computational cost.
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Figure 8: Turbulent flow over a flat plate: variation of skin friction coefficient (Cf ) over the flat plate.
For adapted quad-dominant mesh nh = 8235, DoF = 41187, and p = 2
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Figure 9: Turbulent flow over a flat plate: convergence of drag coefficient (Cd)

4 Conclusion and Future Work
An extension of metric field based mesh adaptation to quad-dominant meshes for high-order DG meth-
ods has been presented. The adaptation methodology relies on analytical optimization, requiring only
the desired number of degrees of freedom to generate an adapted mesh. Blossom-Quad algorithm has
been used to get optimum quads by recombining triangles. The methodology is tested for various flow
scenarios.

For the scalar advection-diffusion test case, mesh adaptation achieves optimum order of error conver-
gence even on coarse meshes. This is because the mesh adaptation algorithm drives the meshes towards
the one with the errors equidistributed across the mesh elements, giving us the most optimal mesh for a
given complexity N . For turbulent flow over a flat plate, mesh adaptation achieved drag convergence at
a much lower DoF compared to the results of FUN3D and CFL3D.
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As a future work, we plan to extend the current framework to adjoint and hp-mesh adaptation and
couple it with quasi-structured meshes to get almost right-angled adapted quads within the boundary
layer and around shocks.
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