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Abstract: We propose to rely on a flat Dirichlet distribution to sample the eigenvalues of the
Reynolds Stress Tensor in RANS simulations. The goal is to forward propagate the uncertainty
inherent the structure of the turbulence closure to targeted QoIs. The flat Dirichlet distribution is
defined over the 2-dimensional simplex delimiting the Reynolds Stress Tensor realizability condi-
tions. This ensures the tensor positive-definiteness and serves the uncertainty forward propagation
by means of diverse techniques e.g., Monte Carlo or Polynomial Chaos Expansions. Simulations
are performed using a modified version of the open-source SU2 suite. Results are obtained for two
reference test cases. Namely, the subsonic air flow over a backward facing step and the NACA0012
airfoil operating in subsonic conditions and with a variable angle of attack.
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1 Introduction
Strong inherent assumptions underlying turbulence closures employed in Computational Fluid Dynamics
(CFD) are known to limit the credibility of numerical predictions [1]. The direct quantification of the
uncertainty associated to turbulence closures is demanding, if not intractable, requiring the community to
devote efforts to the development of formal and practical Uncertainty Quantification (UQ) techniques [2].

In this work, we take advantage of Eigenspace Perturbation Methods (EPM) [3, 4], also referred to
as Eigenspace Perturbation Framework [5]. The EPM is designed to obtain reasonable and informed
uncertainty estimates of selected Quantity of Interest (QOIs) of the turbulent flow. In its standard
implementation [6], the EPM entails the realization of 5 different CFD simulations of the problem under
investigation. Each realization corresponds to a specific perturbation of the Reynolds Stress Tensor
(RST). Ultimately, the five different predictions provide an estimate of the uncertainty associated to
the structural deficiency of the turbulence closure. We stress the deliberate use of the word estimation,
rather than quantification, since the method provides only uncertainty estimates rather than rigorous and
provable bounds on the prediction. Lately, the methodology became quite popular and has been applied
to canonical problems in turbulent flows, with extension to Large Eddy Simulations [7]. Investigations
were also devoted to understanding the physical plausibility of the standard EPM approach, see [8].
Recently, critiques has been moved concerning the consistency of the perturbed RST stemming from
the common EPM implementation [5], showing that the combination of eigenvector perturbation and
moderation factor (typically employed to improve the stability of the solver) may lead to non physical
Reynolds stress dynamics. According to this latter analysis, in Ref. [5] the Authors derive a set of
necessary physics-based constraints. The EPM was also exploited for different purposes. For instance,
it has been coupled with data-driven algorithms [9] and employed to devise optimization strategies
accounting for the credibility of the CFD model e.g., Refs. [10, 11, 12, 13, 14].

The quest of improving the EPM is a prolific research ground. Researchers investigate strategies to
generate random realizations of the RST, see [15]. In Ref. [9], the authors propose a mapping between
a pair of natural to a pair of physical coordinates. On top of this work, in Ref. [16, 17] the authors
present a further extension including the use of Euler angles for parameterizing the perturbations of the
Reynolds stress eigenvectors, proposing a random matrix approach which directly samples a maximum
entropy distribution defined on the set of positive semidefinite matrices. In Refs. [18, 19], it is instead
proposed to employ unit-quaternion in place of the Euler’s angles and the EPM is applied in the context
of machine learning assisted RANS and UQ.
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In this paper we focus on the eigenvalues perturbations only. We propose to rely on a flat Dirichlet
distribution on a 2-dimensional simplex to directly sample the barycentric coordinates of the RST eigen-
values. The goal is to forward propagate the uncertainty related to the RST spectrum to the targeted
QoIs, for instance using a plain Monte Carlo approach. In general, parametrization strategies are pos-
sibly subject to shortcomings. For instance, the mapping employed in [9] does not generally guarantee
the realizability of the perturbed RST, admittedly requiring the implementation of an ad hoc clipping
strategy to handle any out-of-bound perturbation. Sampling the eigenvalues from a Dirichlet distribution
ensures positive definite realizations of the RST without requiring clipping. Moreover, the definition of a
Dirichlet distribution provides a means to formally characterize the uncertainty affecting the RST eigen-
values. The characterization may serve the forward propagation of the uncertainty through the CFD
model by means of advanced UQ techniques e.g., Polynomial Chaos for which we report an example. In
this work, CFD simulations are performed using the open-source SU2 suite [20, 21], in particular the
EQUiPS module enabling EPM capabilities [22]. Note that the EQUiPS module implements the stan-
dard EPM from [6], and it includes some clipping operations on the turbulent kinetic energy production
term. To achieve our goals i.e., to accommodate the injection of arbitrary perturbations stemming from
the sampling of the Dirichlet distribution, the source code was slightly modified.

This paper develops according to the following structure. Section 2 briefly recalls The fundamentals
of the EPM are summarized in Sec. 2. There, we also presents the sampling strategy applied to obtain
random realizations of the RST. Results are instead reported in Sec. 3 and concern two reference test
cases namely, the subsonic flow of air over a backward facing step and the subsonic flow of air over a
NACA0012 airfoil at a variable angle of attack. Conclusions are exposed in Sec. 4.

2 Methodology
The EPM [3, 4] consists in applying perturbations of finite amplitude to the eigenspace of the RST
during the CFD iterations. The formal aspect of the methodology are well established and detailed in a
number of reference papers [3, 4, 23, 9, 6, 8, 5]. Hereinafter, we briefly recall the fundamental aspects.

The physical admissibility of the RST requires it to be positive semi-definite, and this leads to the
specification of the set of realizability conditions [24, 25]

⟨uiui⟩ ≥ 0, ⟨uiui⟩+ ⟨ujuj⟩ ≥ |2 ⟨uiuj⟩| , det (⟨uiuj⟩) ≥ 0, with i, j = {1, 2, 3}. (1)

Since the RST can be decomposed into an anisotropy and a deviatoric part

⟨uiuj⟩ = 2kt

(
vikΛklvjl +

δij
3

)
, (2)

it follows that realizability conditions apply also to the anisotropy tensor. In the above expression, the
anisotropy part is expressed in its spectral form (vik and vjl are the left and the right eigenvectors, Λkl

a diagonal matrix containing the eigenvalues λi).
During the CFD iterations, the EPM injects perturbations of finite amplitude to the eigenspace of the

RST provided by a baseline turbulence closure. Under the condition of that the realizability conditions
Eqs. (1) are fulfilled, any quantity in Eq. (2) may be perturbed

⟨uiuj⟩∗ = 2k∗t

(
v∗ikΛ

∗
klv

∗
jl +

δij
3

)
, (3)

with the superscript ∗ indicating a perturbed entity. According to this approach, the whole Reynolds
stress tensor realizability space might be explored to estimate the structural uncertainty inherent to
the turbulence closure. To simulate the perturbed flows, we take advantage of the SU2 open-source
suite [20, 21]. SU2 is equipped with EPM capabilities [22] implementing the approach described in [6]
with eigenvalues perturbations modulated by an the under-relaxation factor described in [15]. In this
work, we employ a default value of 0.1 for the under relaxation factor, for all simulations. In general,
it is assumed a uniform spatial perturbations for the eigenvalues Λ∗

kl and eigenvectors v∗ik, whereas
perturbations of the kt value are not considered.

Summarizing, in its standard implementation the EPM entails the execution of five additional sim-
ulations i.e., additional w.r.t. the baseline (unperturbed) turbulence closure, associated to specific re-
alizations of the RST. Namely, eigenvalue perturbations seek three extremal states of turbulent com-
ponentiality (labelled 1C, 2C, and 3C) combined with extremal states associated to the production of
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turbulent kinetic energy (Pmax and Pmin). The 1C, 2C, and 3C can be visualized as the vertexes of
a triangle, see Fig 1. In practice, x3C corresponds to isotropic turbulence componentiality and it is
invariant to the perturbation of the eigenvector. Because of the RST realizability contitions, the tensor
eigenvalues expressed in barycentric coordinates must lie within the area of this triangle. Hereinafter,
we will adopt the following labels Pmax

1C (PA), Pmax
2C (PB), 3C (PC), Pmin

1C (PD), Pmin
2C (PE), and (BS)

to indicate the baseline model. In the standard EPM, the turbulent uncertainty estimates of a selected
performance p are then obtained by considering the maximum prediction dispersion resulting from the
five EPM solutions plus the BS according to

∆EPM
p = max(pBS, pPA, pPB, pPC, pPD, pPE)− min(pBS, pPA, pPB, pPC, pPD, pPE), (4)

which provides an estimation about the dispersion of RANS prediction due to epistemic uncertainty
inherent to the turbulence closure. In the following, we neglect PD and PE to reduce the computational
burden and, most importantly, to avoid the effect of the eigenvector perturbation combined with the
under-relaxation factor exposed in [5]. Although naive approaches may be implemented, the formalization
of this step is left to future dedicated investigations.

The methodology described so far provides a clever way to provide estimates of the prediction un-
certainty. We propose to sample the RST eigenspace by relying on a flat Dirichlet distribution on a
2-dimensional simplex. Namely, a symmetric distribution with concentration parameter α equal to 1

w ∼ PDir (ξ;α) =
1

B(α)

3∏
k=1

ξαk−1
k , B(α) =

3∏
k=1

Γ(αk)

Γ

(
3∑

k=1

αk

) , α = (1, 1, 1), (5)

being the normalizing constant B(α) a multivariate beta function expressed in terms of the gamma
function Γ. Each of the Dirichlet samples (wi) does not specify the eigenvalues of the anisotropy tensor,
but rather defines the weights of the eigenvalue in the barycentric map with vertices x1C = (0.0, 0.0),
x2C = (1.0, 0.0), and x3C =

(
0.5,

√
3/2
)
. By construction, each Dirichlet sample wi satisfies the con-

straint of that
∑3

d=0 wi,d = 1. Therefore, the following mapping holds

xi = wi,1x1C + wi,2x2C + wi,3x3C , yi = wi,1y1C + wi,2y2C + wi,3y3C . (6)

This convex combination of the vertexes 1C-2C-3C allows to generate random points uniformly dis-
tributed within the RST realizability space, see Fig. 1a. Ultimately, the approach can be employed to

1C 2C

3C

(a)

1C 2C

3C

(b)

Figure 1: (a) Uniform random sampling over the barycentric map of the eigenvalues in the Euclidean
space. (b) Full-tensor Gauss-Laguerre quadrature sampling.

forward propagate the structural uncertainty related to the turbulence closure to any QoIs, for instance
using a plain Monte Carlo approach. We employ a flat Dirichlet distribution, but the selection of non
symmetric components of the concentration parameters vector α, would allow to control the position-
ing of the bulk of the probability density anywhere within the realizability space, providing a mean to
promote or penalize the sampling in specific regions.
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Additionally, characterizing the uncertainty is fundamental for the use of efficient UQ techniques
e.g., the construction of Polynomial Chaos based surrogates. The Gauss–Laguerre quadrature rule can
be applied to sample the simplex at the root of Laguerre polynomials which, according to the Askey
scheme, are associated to the Gamma distributions used to build the Dirichlet one, see Fig. 1b. In such
way, it is possible to build the full-tensor product and integrate exactly the polynomial functions in a
multi-dimensional setting.

In the following, we produce Monte Carlo estimates of the statistics of diverse QoIs for two application
cases i.e., a subsonic stream over a backward facing step and a NACA 0012 airfoil at different angles
of attack. For the second test case, we build Polinomial Chaos surrogates, assessing their suitability in
handling the proposed setting.

3 Results

3.1 Backward Facing Step (BF-STEP)
This test corresponds to the 2DBFS validation case for turbulence models provided by the NASA
TMR (Turbulence Modeling Resource) [26, 27]. The very same problem is included in the ERCOF-
TAC Database (Classic Collection) #30, and we consider a null inclination of the upper wall. This is a
widely-tested configuration [28, 29, 30, 31]. The NASA TMR provides a series of 2D structured grids of
different quality and resolution. Here, we employ the quite coarse grid 65x65-25x65-97x113-33x113. We
do acknowledge that this grid is not sufficient to represent the full physics of the backward facing step.
Indeed, the dissipation caused by the coarse resolution damps the flow unsteady features which typically
make the convergence to a time accurate solution difficult to achieve (see the SSTm or the SSTVm Model
Results from NASA TMR). With this grid, CFD simulations easily converge to a steady solution. In
our case, the grid choice is driven by the computational cost of the Monte Carlo analysis (based on
10’000 samples for this case). Despite the rough approach, predictions are in line with experimental
measurements and with benchmark comparison against data provided on the NASA TMR repository.

The Reynolds number is approximately 36000 based on step height H = 0.0127 m. The total
conditions applied at the inlet boundary are a total pressure p0 = 100171.440 Pa and a total temperature
T0 = 297.359 K, whereas at the outlet a static pressure value of p = 99300 Pa is used. At these conditions,
the Mach number upstream the step is about 0.128, as indicated for this test case. Considering the BS
turbulence model i.e., the Menter’s Shear Stress Transport (SST) closure [32], the length of the inflow
segment is large enough to promote the full development of the boundary layer ahead of the step. A no
slip wall condition applies on the remaining boundaries.

A Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) approach with gradient
limitation based on the popular upwind Roe scheme was employed [33]. Gradient reconstruction was
carried out using the Green-Gauss approach. Convergence was assessed by requiring a reduction of the
density residual of 10 orders of magnitude. A maximum number of iteration is set at 40000, but this
limit is never reached for all the simulations considered in this Section.

Figures 2 show the Mach fields and the fields streamlines as predicted from the BS, PA, PB, and PC
models, respectively. Clearly, the different perturbations applied to the RANS turbulence closure lead
to the development of diverse solutions. In particular, it is evident that the shape of the recirculation
bubble is largely influenced by the applied perturbation. The length of the recirculation bubble is indeed
one of the QoIs targeted by the Monte Carlo analysis.

We first present the UQ analysis concerning the pressure coefficient (Cp) and the skin friction coeffi-
cient (Cf ) along the lower domain wall i.e., the portion of the lower boundary originating past the step,
being the position of the step at x/H = 0. For both quantities, we report the ∆EPM indicator from the
standard EPM (considering only BS, PA, PB, and, PC) and the 2σstd envelope resulting from the Monte
Carlo analysis. The first one is reported as a red shaded area whereas the second is the gray shaded
area. The black continuous line is the average of the Monte Carlo analysis, whilst the green line is the
prediction from the BS model. The dots indicate instead the experimental measure.

Concerning the pressure coefficient, Fig. 3a shows that numerical predictions fairly approach the
experimental trend. Note that, according to common practice, the Cp values are shifted so that Cp(x/H ≈
40) ≈ 0. Overall, the BS predictions (green) underestimates the Cp value, with the largest discrepancy
found at x/H ≈ 8. Results are in line with the benchmark data provided on the NASA TMR repository.
In most of the domain, the experimental data are found outside both the ∆EPM and the 2σstd envelopes,
indicating that the uncertainty inherent the sole distribution of energy among the eigenmodes of the RST
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(a) (b)

(c) (d)

Figure 2: BF-STEP Mach field and streamlines. (a) BS. (b) PA. (c) PB. (d) PC.
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Figure 3: BF-STEP. (a) Pressure coefficient Cp over the lower wall. (b) Skin friction coefficient Cf over
the lower wall.

can not explain the discrepancy in the numerics-experiment comparison. The two uncertainty envelopes
are comparable in terms of width and covered region.

Similar considerations apply to the skin friction coefficient which is reported in Fig. 3b. The BS
prediction fairly matches the experimental data, except for the first portion of the domain where the
CFD model provides lower outputs. The 2σstd and ∆EPM envelopes are again comparable, the latter
being generally a bit larger.

Given the number of realizations available, we estimate the probability distribution of the targeted
QoIs at local stations along the lower wall, using a gaussian kernel. The results obtained are plotted
in Fig. 4 for both the pressure and the skin friction coefficients. At each station, the local probability
distribution has been scaled in order to set the peak of relative likelihood to 1. The scaling was needed to
set a comparable colormap and to identify the locus of most likely values w.r.t. the position along the lower
wall. Although the standard EPM just provides reasonable and informed uncertainty estimates (rather
than rigorous and provable bounds), the ∆EPM envelope largely contains the bulk of the probability
distribution for all the lower wall length. Of particular interest is the x/H ≈ 3 station in Fig. 4b,
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Figure 4: BF-STEP. (a) Pressure coefficient Cp over the lower wall. (b) Skin friction coefficient Cf over
the lower wall.

at which we see that the most likely predicted Cf is found outside ∆EPM. This region corresponds
basically to the portion of the lower wall subject to a reverted flow positioned below the core of the
primary re-circulation bubble. Here, the lower bound of the ∆EPM is indeed determined by the BS
prediction, see Fig. 3b. The most probable prediction stemming from the UQ Monte Carlo analysis is
even lower than the BS solution, which is anyway well included within the 2σstd. Nonetheless, we stress
that the probability density function is estimated considering a flat Dirichlet distribution over the whole
realizability space of the RST. This encodes complete ignorance concerning the eigenvector coordinates
except just the knowledge of the realizability limits. In this approach, we include many realizable yet
not plausible perturbations of the RST [8]. Clearly, a different specification of the Dirichlet distribution
e.g., selecting non symmetric components of the concentration parameters vector α, would allow to force
the bulk of the Reynolds stresses probability density anywhere within the realizability boundaries. By
playing with the concentration parameters, the user would also be able to penalize the exploration of the
region of the realizability triangle which are likely to be associated to not plausible Reynolds stresses.

For this test case, the standard EPM provides a good approximation of the Monte Carlo envelope
stemming from the sole perturbation of the eigenvalues. The ∆EPM reasonably approximates the 2σstd
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envelope, surely including the bulk of the probability density. Nonetheless, we remind that in our setting
we are not perturbing the turbulent kinetic energy kt or the eigenvectors of the anisotropy tensor, see
Eq. (2). Therefore, the whole discussion should be revised in case these latter perturbations are also
taken into account, also in view of the implications exposed in[5].

We focus now on the statistics of the flow reattachment point downstream the step. The reattachment
point is identified from the CFD solution by finding the mesh nodes along the lower wall over which
the skin friction coefficient changes its sign. Figure 5 reports the distribution of predicted reattachment
points as reconstructed from the 10’000 Monte Carlo realizations using kernel density estimation. In

4.5 5.0 5.5 6.0 6.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7 BS
EXP

Figure 5: BF-STEP. Monte Carlo analysis of the flow reattachment point prediction.

particular, the sample set is partitioned into 10 complementary sub sets of 1’000 samples each and the
distribution is reconstructed for an increasing size of the Monte Carlo sample set, to provide a rough
convergence analysis. The 10 different distributions are reported in a gray scale, being the darkest the one
relative to the full Monte Carlo sample set, and shows almost overlapping curves. The reattachment point
predictions are distributed normally around x/H ≈ 5.6. In green, we report also the baseline prediction,
which is found further donwstream, whereas in blue we report the experimental measure from [26],
complemented by the provided 2σstd envelope. The BS prediction is fairly close to the experiment, surely
well included within its 2σstd envelope. The UQ analysis of the turbulence closure provides a quite large
uncertainty range, with the bulk of the probability density displaced towards an early prediction of the
flow reattachment point.

3.2 NACA0012 airfoil (AIRFOIL)
The reference test case corresponds to the 2DN00 test case provided by the NASA TMR (Turbulence
Modeling Resource) [26, 27]. The UQ analysis targets the airfoil aerodynamic coefficients namely lift (cl),
drag (cd), efficiency (EF = cl/cd) and pitching moment (cm). The computational domain is discretized
using the 449x129 FAMILY I grid from the NASA TMR repository [26, 27]. The mesh represents a
reasonable trade-off between flow resolution and computational burden [34]. Rigorously, a set of meshes
should be constructed. Indeed, different grids are required to simulate the diverse flow configurations
developing from every single RST realization i.e., for each EPM perturbation. Nevertheless, the com-
putational burden would be unbearable and common practice it select a unique grid based on the BS
model. Simulations are terminated if the cl and the cd coefficients remain within a ϵ ≈ 10−6 tolerance
range for a significant 100 of consecutive iterations or at the reaching of the maximum iteration number
(20000). In general, simulations converge well below 3000 iterations, and the maximum iteration limit
is never hit, at least for the values of the angle of attack considered hereinafter.

Figures 6 show the Mach fields and the fields streamlines as predicted from the BS, PA, PB, and PC
models, respectively, obtained at α = 20◦. As expected, diverse solutions are obtained. As the airfoil is
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(a) (b)

(c) (d)

Figure 6: AIRFOIL Mach field and streamlines. (a) BS. (b) PA. (c) PB. (d) PC.

operating at a high angle of attack, the BS solution presents a partially separated region in the aft part,
underestimating the onset of stall (experiments predict stall onset at about 17◦-18◦). Different EPM
perturbations develop peculiar solutions. PA results into a fully attached flow, whereas PC increases the
extent of the recirculation bubble developing in the aft portion of the airfoil. In general, these facts may
be interpreted in view of the physical meaning of the extremal states of turbulence sought by the specific
EPM perturbation. Nonetheless, to maintain the cost of the Monte Carlo analysis reasonable we rely on
a coarse grid and on a loose CFD convergence criteria. Moreover, the clipping operation on the turbulent
kinetic energy production term operated in the current SU2 implementation of the EPM appears to have
relevant consequences on the UQ analysis. For these reasons, we only focus on the investigation of the
differences between the diverse UQ approaches in terms of predicted uncertainty estimates. Namely, we
consider specific CFD models with fixed grid and numerical setting.

We perform a Monte Carlo analysis of airfoil performances in the interval α ∈ [0◦−20◦] and considering
1000 realizations for each value of α, see Fig. 7. The plots report the mean of the Monte Carlo data set
(µ) complemented by the 2σstd envelope. Note that the data set has been cleansed from very few points
that were associated to corrupted CFD simulations. These were identified as points outside the 5σstd
range and were at most 10 for α = 7◦, less than 5 for α = 9◦, 10◦, 2 or even none for the remaining angles
of attack). The envelope is very limited for the lift coefficient, as expected since we are mostly considering
the linear portion of the cl-α curve, becoming larger for α approaching the stall value. The other QoIs
show a larger envelope, indicating a prominent uncertainty due to the turbulence closure. In terms of
amplitude, the standard EPM min/max envelope is comparable to the 2σstd envelope. Interestingly,
the two envelopes maintain a comparable amplitude but, at large α, they do not overlap. It has to be
stressed that the fact that the magnitude of the two envelopes is comparable is not of general validity,
but rather a rough coincidence as shown in the following. Moreover, plotting the sole 2σstd envelope
does not provide an indication concerning the skewness of the distribution.

Since we rely on a Monte Carlo analysis, we reconstruct the full probability distribution of the
variables via kernel density estimation. Figure 8 reports the probability distributions associated to the
four performances, for a value of α = 0◦, 6◦, 12◦, and 18◦ only. In the plot, we report the probability
density as estimated for a data sets of increasing dimension, the smallest including 100 elements (white),
the largest 1000 (black), underlying a convergence of the estimated curve w.r.t. the Monte Carlo samples.
The densities are compared against the BS (blue vertical line) and the PA-PB-PC (red vertical lines)
predictions. Although these latter do often include the bulk of the probability distribution, the extremal
states are not representative of the effective uncertainty. This is clear from the plots relative to α = 6◦,
for which we observe a multimodal distributions with points placed well outside the ∆EPM. In fact, there
is a considerable number of realizations which falls outside the ∆EPM, for each of the four considered
QoIs. This is of course an expected issue concerning the EPM. Indeed, it is widely known that, due to
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Figure 7: AIRFOIL. Figures plot the mean and the 2σ envelope resulting from the Monte Carlo analysis
of the targeted QoIs.

the nonlinearity of the fluid equations, the method provides uncertainty estimates rather than rigorous
and provable bounds. Instead, the probability density associated to the QoIs for α = 18◦ (about the stall
value) indicates that, in the considered setting, the standard EPM approach may be overly conservative
since the extremal states of turbulence componentiality lead to quite unlikely predictions e.g., see the plot
relative to cl and cm. This is not surprising either, because extremal states of turbulence componentiality
are seldom in practical applications, if not even implausible. In fact, the standard implementation of the
EPM was already proved to provide realizable but not plausible realizations of the RST, see [8].

The bottom line is, once again, that the sole indications provided by the EPM perturbations to the
extremal states PA-PB-PC may be incomplete and insufficient to characterize the uncertainty stemming
from the structure of the turbulence closure. Carefulness should be pledged in exploiting such information
in aerospace applications e.g., design optimization [12]. Nonetheless, the cost associated to a Monte Carlo
analysis would be unbearable in practice, if not just for very simple cases, rendering worth the exploration
of possible implementation of advanced uncertainty quantification techniques.

3.2.1 UQ via Polynomial Chaos Expansion

As the cost of carrying out a full Monte Carlo analysis to forward propagate the epistemic uncertainty in
turbulence closures based on the EPM approach would be computationally too demanding, we explore
here the possibility of combining the EPM with a Polynomial Chaos Expansion (PCE) approach. PCE
finds its roots in the pioneering work of Wiener [35], which later inspired the work of Ghanem focused on
representing random processes and applications to practical engineering problems, see [36] for a complete
overview. For the purpose of efficiently forward propagating the uncertainty, it is possible to build a
PCE surrogate of the mapping between some random input of the full computational model (in our case
the weights wi of the barycentric coordinate sampled from the Dirichlet distribution) to a generic output
namely, the QoIs o = o(wi).

The expansion corresponds to the orthogonal projection, into the linear span, of a finite set of or-

9



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

Cl Cd Cm EF

n

Cl Cd Cm EF

n

Cl Cd Cm EF

n

Cl Cd Cm EF

n

Figure 8: AIRFOIL. Figures report the estimation of the probability density and the scatter plot of the
Monte Carlo realizations for the four QoIs (α = 0◦, 6◦, 12◦, and 18◦ from top to bottom).
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thonormal polynomials Ψk (wi)

o(wi)
.
=

∞∑
k=0

ckΨk (wi) , (7)

where ck are unknown coefficients and where the index of summation k indicates the polynomial order.
In particular, k ranges from 0 to ∞. In practice, an upper arbitrary value P must be set to truncate
the expansion. The polynomial basis Ψ(wi) is chosen such that the following orthogonality relation,
corresponding to the inner product in the L2 Hilbert space, is satisfied

⟨Ψi(wi),Ψj(wi)⟩ =
∫

Ψi(wi)Ψj(wi)p(wi)dwi = ⟨Ψi(wi)
2⟩δij , (8)

and the choice depends on the peculiar distribution characterizing the inputs.
The Dirichlet distribution can be constructed starting from a set of K independent gamma random

variables (Γ)
Y1 ∼ Γ(α1, β), . . . , YK ∼ Γ(αK , β) (9)

being α and β the shape and the rate (or scale) parameters, respectively, according to

PDir (ξ1, ξ2;α) ∼
(
Y1

V
, . . . ,

YK

V

)
, with V =

K∑
i=1

Yi. (10)

To reproduce the flat Dirichlet distribution, unit shape and rate parameters were used. In this work we
are trying to sample uniformly from a 2-dimensional simplex, therefore we can interpret our problem as
dependent on three independent random variables distributed according to the same Γ distribution. Ac-
cording to the Askey scheme, the basis of the PCE surrogate must be Gauss–Laguerre polynomials. With
this information, one option is to sample the realizability triangle at the root of Laguerre polynomials
and solve a quadrature integration formula to compute the expansion coefficients, see Fig. 1b. Another
possibility is to solve a least square problem minimizing the residual between the surrogate output and
the reference data, which is the strategy we adopt here. Once the truncation scheme has been selected,
we solve the discrete minimization problem

c = argmin
c∈R

 1

N

N∑
i=1

(
o(wi)−

P∑
k=0

ckΨk (wi)

)2
 , (11)

where the wi is the set of training points (different than the Monte Carlo sample set employed to present
the previous analysis). In particular, we decided to rely on a training set of 64 points sampled using the
Gauss-Laguerre quadrature rule. Note that this choice is just to differentiate from the random Monte
Carlo sampling and to obtain regularly spaced point over the realizability triangle.

Once the expansion coefficients are available, we perform two tests to assess the quality of the surro-
gate, see [37]. First we evaluate the generalization error

Errgen =

 1

M

M∑
i=1

(
o(wi)−

P∑
k=0

ckΨk (wi)

)2
 , (12)

considering the data from the Monte Carlo analysis as the a validation test set, being M=1000. After,
we evaluate the coefficient of determination

R2 = 1− Errgen
Var({o(w1), . . . , o(wM )})

with R2 ∈ (−∞, 1] , (13)

Note that R2 = 1 indicates a perfect fit.
The error estimators are reported in Fig. 9 and Fig. 10, for all the considered values of the angle of

attack α. Concerning the Errgen, very small values are obtained throughout the whole range of α, with
a general increasing trend towards the upper bound. Nonetheless, the generalization error is well below
the acceptable threshold for all the QoIs. The PCEs related to the efficiency generally present the larger
error, in the order of 5 · 10−2, which is by the way acceptable in relation to the absolute values of EF .

The coefficient of determination R2 is very close to the perfect fit value (R2 = 1) for all the α,
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Figure 9: AIRFOIL. Generalization error (Errgen) of PCE surrogate obtained for the targeted QoIs.
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Figure 10: AIRFOIL. Coefficient of determination (R2) of PCE surrogate obtained for the targeted QoIs.

indicating that the surrogate obtained for this test case are of good quality and do not suffer from poor
approximation or overfitting issues.

4 Conclusions
Turbulence closures employed in CFD simulations rely on strong inherent model-form assumptions that
limit the credibility of numerical predictions for some flow configurations. The direct quantification
of the epistemic uncertainty is practically intractable and requires the development of advanced UQ
techniques. The EPM is designed to pursue the goal of efficiently compute uncertainty estimates rather
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than establish rigorous and provable bounds on the prediction. In this perspective, the standard EPM
provides only a limited analysis of the RST structural uncertainty. Nonetheless, the question of how
these estimates compare to the actual uncertainty is investigated in this work.

In particular, we take advantage of two academic test cases to provide a Monte Carlo analysis con-
cerning the forward propagation of the uncertainty affecting the spectrum of the RST. We stress here
that the goal of this paper is not to draw conclusions about the physics of turbulent flows. Indeed,
this would require numerical models of large computational cost which would render the Monte Carlo
analysis unfeasible. The goal is rather to expose the implications and the limits associated to using the
standard EPM w.r.t. adopting a more comprehensive approach. For this reason, we rely on a fixed set
up e.g., convergence criteria, grid, numerical scheme, independently from the perturbation applied.

The sampling of the Monte Carlo realizations of the RST is carried out exploiting a flat Dirichlet
distribution defined over the realizability space. The data are then post-processed to obtain statistical
information concerning the propagation of the turbulence closure epistemic uncertainty to selected quan-
tities of interest. Results suggest that the standard EPM envelope does often include the bulk of the
probability density, posing itself as a rough, yet efficient, criterion for estimating the output uncertainty
range. Nonetheless, there exist situations for which a large number of realizations falls outside the stan-
dard EPM envelop, or situations for which the standard EPM envelope is overly conservative. These
are of the utmost relevance for methodologies built on top of the EPM. For instance, in [12], it is stated
that design exploration and optimization under turbulence model-form uncertainty was practically never
investigated prior to 2020. In this regard, two open research questions are formulated by the authors
namely, how to produce reliable uncertainty estimates, and how to integrate those into design optimiza-
tion. In particular, the issues exposed in this work are relevant for both aspects. Indeed, the uncertainty
estimated produced by the standard EPM are shown to be not quite always reliable. At the same time,
a Monte Carlo based approach would result too demanding for practical applications that require the
evaluation of the output statistics for a large number of iterations e.g., robust design optimization. This
is particularly true considering applications of industrial interest for which a Monte Carlo analysis of the
turbulence closure structural uncertainty would just be out of question. This latter aspect requires of
course the implementation of more advanced and efficient UQ techniques.

In this work, the forward uncertainty propagation by means of the construction of PCE surrogates
is shown to be a formally viable approach, at least for a test case as simple as a two-dimensional airfoil
in a subsonic freestream. Naturally, further investigations should be devoted to improving the efficiency
of the process of constructing the surrogate, considering also more complex computational models. In
particular, a key aspect is to devise a formal parametrization for the orientation of the RST basis,
to efficiently combine it to the eigenvalues perturbation to build PCE surrogates. At the time of the
writing, Authors suggest different approaches [6, 16, 18] that may be straightforwardly exploited, but
the feasibility of building PCE surrogates for practical applications must be investigated in view of the
larger computational cost entailed by the increased dimensionality of the problem.
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