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Abstract: Leading edge (LE) defects and damages on wind turbine blades are a significant cost
driver within the wind industry, as they endanger the blades’ structural integrity whilst also dimin-
ishing their aerodynamic performance. While the structural integrity of the blades is paramount
and must be accounted for when performing damage diagnosis, the aerodynamic effects of LE
defects can lead to significant production losses, providing a financial incentive for carrying out
repairs. Yet to evaluate those aerodynamic losses, first damages need to be identified in blade
inspection images and then be grouped by their severity. Currently there is no procedure for per-
forming such grouping or categorization in terms of aerodynamic impact, though. Hence in this
work we analyze a recently generated 2D-CFD database of airfoil polars with 11 different types of
LE defects to establish how they could potentially be grouped. By visualizing the data and using
artificial neural networks, we conclude that many types of defects can be categorized simply by
their distance to the LE. This can help decision making on blade maintenance with drone-based
imagery. Other defects, such as changes to the airfoil camber behave substantially different and
require their own categories.

Keywords: wind turbine, erosion, artificial neural networks.

1 Introduction
Leading edge (LE) defects/damages on wind turbine blades are a significant cost driver within the wind
industry, as they endanger the blades’ structural integrity whilst also diminishing their aerodynamic
performance [1, 2, 3]. This has made LE erosion research more common in recent years [4, 5], including
efforts to model erosion effects computationally [6]. Whilst larger turbines produce power at lower cost,
they are also more likely to suffer from LE erosion damage, as their blade tips are striking airborne
particles (rain, hail, sand etc.) at greater speed [7], thus this issue — despite some promising mitigation
strategies being deployed — is going to remain. Turbines are regularly inspected to ensure their optimal
operation and schedule maintenance procedures. This includes image-based reports detailing each blade’s
condition, nowadays often performed by drones carrying high resolution cameras. Ideally, those images
could be automatically processed to identify defects and help making informed maintenance decisions.
Whilst under structural considerations particularly cracks in the laminate are flagged, even small, struc-
turally insignificant, surface perturbations (in the order of 0.1mm) can be significant aerodynamically
[8, 9, 10], especially as modern turbines blades operate at Reynolds numbers well above 10 million. This
is especially true for the flow around the LE, where the boundary layer is thin and is experiencing strong
acceleration.

As the appearance of LE surface perturbations is a product of interacting stochastic factors, including
the material composition, environmental conditions, and production process, its geometric manifestation
is equally stochastic and thus highly varied. Hence, countless possible LE defect types with equally
many parametric variations could be conceived, making it difficult to match observed damages from
drone-based imagery to a particular type and associate it with a certain aerodynamic loss, which would
then help determining whether a repair would financially make sense. To facilitate the conversion from
inspection imagery to aerodynamic losses it would thus be beneficial to group all types and manifestations
of damages/defects into certain severity classes and connect them to certain damage parameters, like
location or size for instance. Images could then specifically be searched for those particular features and
categorized accordingly by an algorithm.

A deep numerical investigation using 2D Reynolds averaged Navier-Stokes (RANS) simulations on
the effects of leading-edge (LE) defects on airfoil aerodynamics was recently conducted [11] that pa-
rameterized 11 forms of commonly observed LE surface imperfections and computed their impact on
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performance. The generated aerodynamic data set is openly-available and investigated here [12] to
unearth certain correlations between the many damage types and evaluate if they can be grouped.

In this work, we seek to explore the aforementioned LE defect data set and understand the aerody-
namic effects of each of the defect types. Then, using artificial neural networks [13] (NN), we verify if
the aerodynamic penalties of LE defects can be used to find which type of defect is present. With these
two steps concluded, we attempt to define a new classification for LE defects, based on aerodynamics
effects and geometry properties of the defects themselves.

2 The data set
We utilize the aerodynamic properties computed for all 2868 parametric defects variations within the
CFD database [11] under the transitional boundary layer regime. We exclude the fully turbulent cases
as they are much less sensitive to LE defects. We also exclude the defects related to roughness, as they
were modeled using modifications to fully turbulent boundary layers [14]. The defect types and their
variables are shown in Fig. 1 (the filled overhang is not shown, but corresponds to removing the step of
the overhang by attaching a curve smoothly to the surface) and listed in Table 1.

Defect Variable 1 Variable 2 Variable 3
Overhang height (h) - -

Filled overhang height (h) - -
Vertical LE
translation

displacement (∆y) - -

Stall strip distance to LE (s) height (h) -
Flat patch distance to LE (s) width (∆s) -
Waviness amplitude (h) wavelength (λ) -

Symmetric
loss/addition

width (∆s) height (h) -

Slot height (h) distance to LE (s) width (∆s)
Backward facing

step
height (h) distance to LE (s) width (∆s)

Forward facing
step

height (h) distance to LE (s) width (∆s)

Table 1: Types of defects and their variables.

The data set includes lift (Cl) and drag (Cd) polars for various Reynolds numbers (Re), along with
integral quantities associated with the said polars. From these integral values we select the aerodynamic
parameters that we analyze for each of the defects. These integral aerodynamic parameters include a
combination of the minimum or maximum values of Cl, Cd, and their ratio, along with the angle of
attack (α) associated with such values. While max(Cl) is a useful parameter that is very sensitive to the
airfoil geometry, its accuracy when obtained from a 2D RANS simulation is questionable at best. On
the other hand, max(Cl/Cd) tends to occur before stall and can be obtained reliably. The fact that the
data set is 2D also means that 3D effects from sections very close to the blade tips are neglected. Table
2 summarizes the integral aerodynamic effects chosen for the studies conducted here.

Parameter Description
∆max(Cl/Cd) Change in maximum lift over drag

∆α@max(Cl/Cd) Change in angle of attack for maximum lift over drag [◦]
∆Cl(α=0◦) Change in lift coefficient at zero angle of attack
∆α@Cl=0 Change in angle of attack for zero lift [◦]
∆min(Cd) Change in minimum drag coefficient

∆α@min(Cd) Change in angle of attack at minimum drag [◦]

Table 2: Integral aerodynamic parameters investigated.

Each aerodynamic parameter is plotted against all others in Fig. 2. Some separation of the different
defects can be seen, but they are not clearly split into separate clusters. Hence, a determining which
parameters are linked to which defects is a non-trivial task.

2



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

x/c

y/c

base

over
under

xh

(a) Upper/lower overhang

base

(b) Vertical translation of LE

base
trip

(c) Stall strip

base
�lat patch

(d) Flat patch

base

(e) Waviness

base

(f) Symmetric loss/addition

base

(g) Slot

base
step

(h) Backward facing step

base

step

(i) Forward facing step

Figure 1: Definitions of idealized damage and repair features. All dimensions are in thousands of chord
length.
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Figure 2: Scatter plots for all selected parameters, colored by defect type. Transitional cases only,
Re = [3, 5, 10] million.
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3 Defect effects on integral aerodynamic properties

3.1 Single variable defects
Throughout this section we show the effects of single variable defects on the integral aerodynamic char-
acteristics. All values of Re in the data set are shown using different line types, although Re effects tend
to be small.

In Fig. 3 we show the effects of overhang. Throughout the work, some outliers appeared in the data
set, as the discontinuities around overhang heights of zero. These are due to numerical issues and can
be ignored. We did not remove them from the dataset, as the number of outliers is generally low. The
overhang can lead to large changes in most parameters. Note that ∆α@Cl=0 and ∆α@min(Cd) have a
precision of 1◦ in the data set, which explains their irregular behaviors.

Figure 3: Overhang effects on aerodynamic parameters.

In Fig. 4 we show the effects of the filled overhang. Its effect on the aerodynamic parameters are
limited compared to the other defects, as it represents a subtle change in the LE shape, instead of a
discontinuity.

Figure 4: Filled overhang effects on aerodynamic parameters.

In Fig. 5 we show the effects of the LE translation, measured by the vertical distance ∆y that the LE
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is translated. The translation changes the camber of the airfoil and can lead to negative ∆max(Cl/Cd),
meaning it can improve the airfoil efficiency. It seems to be the only defect that leads to a positive
∆α@Cl=0.

Figure 5: LE translation effects on aerodynamic parameters.

3.2 Two variable defects
We now focus on defects with two variables. Here we use the line colors to show the second variables,
which tend to be much more effective in changing the aerodynamics than Re. The choice of which
variable goes on the horizontal axis matters and can make visualization more or less clear. Hence, we
do not always use the convention in Table 1 to select the first variable (on the horizontal axis) and the
second variable (line colors).

In Fig. 6 we show the effects of the stall strip. Results are fairly insensitive to Re. The aerodynamic
parameters vary substantially and nearly monotonically with the strip height h (colors) and the position s
seems to split results into two groups: positive (suction side) and negative (pressure side) strip positions,
with positive values of s leading to overall larger changes in aerodynamics.

Figure 6: Stall strip effects on aerodynamic parameters.

6



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

In Fig. 7 we show the effects of the flat patch. It shows large positive ∆max(Cl/Cd), with almost
no change to many of the other parameters. The width ∆s of the flat patch increases the aerodynamic
effects nearly monotonically. It shows higher sensitivity when the flat patch is very close to the LE
(s ≈ 0), which is consistent, since the LE is the region of the airfoil with higher curvature, hence the
region that is most modified when flattened.

Figure 7: Flat patch effects on aerodynamic parameters.

In Fig. 8 we show the effects of waviness. It shows patterns in the parameters that are very similar
to the stall strip, but leading to even larger deviations than seen in Fig. 6. While the amplitude h tends
to have a clear and strong monotonic effect on the aerodynamics, the wavelength λ plays a smaller role.

Figure 8: Waviness effects on aerodynamic parameters.

In Fig. 9 we show the effects of symmetric loss/addition. The effects are quite similar to waviness
and the reasons why will be explored later in the paper. Again, the width ∆s plays a smaller role than
the height.
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Figure 9: Symmetric loss/addition effects on aerodynamic parameters.

3.3 Three variable defects
Here we use the line thickness to show the third variables, which is the width of the affected area ∆s
for all defects. Colors are always the defect height h and the horizontal axis is always the position or
distance s, relative to the LE. Again, the choice of which variable goes on the horizontal axis matters
and the choices were made for clarity.

In Fig. 10 we show the effects of the slot, in Fig. 11 the effects of backward facing steps, and in
Fig. 12 the effects of forward facing steps. All defects here behave in very similar ways, which is also
remarkably similar to the stall strip. These similarities will be further clarified in later sections.

Figure 10: Slot effects on aerodynamic parameters.

4 Defects effects on local surface properties
The original data set used in this work only contains integral aerodynamic parameters. However, more
information can be extracted from the simulations used to produce the data set. In this section, we plot
for each defect type a number of curves representing the range of effects seen from looking at all the
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Figure 11: Backward facing step effects on aerodynamic parameters.

Figure 12: Forward facing step effects on aerodynamic parameters.
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simulation results. We focus on Re= 3 million and α=7◦. We do this for clarity, as including all the
simulation results makes the plots difficult to interpret. We use pressure coefficient Cp=(p−p∞)/q∞ and
skin friction coefficient Cf=τ/q∞ for our comparisons, where p is the static pressure on the airfoil surface,
p∞ is the freestream static pressure, q∞ is the freestream dynamic pressure, and τ is the friction force
on the airfoil surface. We analyze these results along the horizontal axis x, with coordinates normalized
by the airfoil chord c.

The Cp and Cf distributions for the various defect types confirm some of the findings in the previous
sections. Other than some edge cases leading to flow separation, the overhang, stall strip, symmetric
loss/addition, slot, backward facing step, and forward facing steps behave in very similar ways. They
all cause local peaks and dips in Cp, while triggering an early transition, seen by the earlier rise in Cf .
Depending on the location of these defects, the transition can occur on either the suction or the pressure
side of the airfoil, or in cases with two discontinuities (symmetric loss/addition and slot), both sides can
transition earlier than the baseline. For some extreme cases, the steps can lead to separation bubbles
on the suction side, but not on the pressure side. The filled overhang has minor effects on Cp and Cf ,
consistent with the small effects on integral parameters. The LE translation has the largest effect on Cp,
with minor effects on Cf. It is also the only defect capable of delaying transition. The flat patch seems
to function mostly as a transition trip, with smaller effect on Cp compared to the steps. Waviness is
difficult to interpret, as the effect on both Cp and Cf is to cause small wavelength fluctuations. It can also
lead to early transition, although only above a certain amplitude, which is consistent with the integral
aerodynamic effects, which are negligible for small amplitudes. Similar to the symmetric loss/addition,
waviness affects both pressure and suction sides concurrently. At this angle of attack, most defects only
affect the suction side of the airfoil, causing earlier transition and small fluctuations in Cp.

Figure 13: Pressure coefficient from representative simulations for the different defect types. Baseline
results in black.

One conclusion from examining the Cp and Cf cuts is how difficult it is to differentiate most LE
defects from visual interpretation of the aerodynamics alone. The Cp distribution after x/c = 0.25 seems
almost entirely insensitive to the defects.
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Figure 14: Skin friction coefficient from representative simulations for the different defect types. Baseline
results in black.

5 Classification using machine learning
We now seek to understand if one can reverse the problem and identify from the aerodynamic parameters
what the defects are. This servers the purpose to understand if the defects lead to different aerodynamic
behaviors, or if they are equivalent. We formulate the problem here as a classification problem and use
a NN where the six aerodynamic parameters acts as inputs and the ten defect types as outputs. NN
have been successfully used to model from airfoil aerodynamics (e.g. [15]) to wind farm performance
[16], including modelling LE defect effects on the cost of energy [17]. We choose not to use Cp and Cf
as inputs because they are mostly sensitive to the defects near the LE, where their values can be very
irregular. This makes it difficult to choose a specific x/c where Cp is measured and very difficult to use
peak values. From a data interpolation standpoint, using Re as one of the inputs would facilitate the
process. However, here we limit ourselves to the aerodynamic parameters as the only inputs to the NN.

5.1 Testing the model for different Reynolds numbers
We train the network with the data set for Re=[3, 5, 10] million and then test the network with the data
set values for Re= 7 million. We optimize the network size based on the training data. From running
tests with one to three hidden layers, each with six to twenty neurons, the optimum setup was found
to be one hidden layer with 19 neurons. This configuration led to the highest arithmetic and harmonic
averages over all defects for correct predictions per number of cases.

We start by looking at the number of correct predictions by the NN. This is shown in Fig. 15. The
filled overhang seems very easy to detect. The flat patch also has a high success rate. However, most
defects seem to be detected correctly less than half of the time, while a few (waviness and overhang) are
misdiagnosed for the vast majority of cases. Overall, the NN has trouble categorizing the data set. The
difficulty in telling defects apart is investigated next.

In order to understand which defects are more similar to each other, according to the NN, we use
the heatmap in Fig. 16. Each line shows a certain defect case. Each column is colored by the average
result for each defect, as predicted by the NN. If the NN is perfect, then the diagonal will be one and all
other elements zero. Here we can see which defects are more similar to each other, according to the NN.
As a noteworthy example, for the filled overhang the NN can accurately predict the defect without false
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Figure 15: Number of cases and correct predictions using the NN, per defect type.

positives, but for LE translation, the NN can predict a possibility that it is a filled overhang. This is
consistent with the fact that both defects involve making subtle changes to the LE curvature. Another
point to highlight is that cases with symmetric loss/addition trigger waviness as output. As seen in Cf ,
both these types of defects lead to effects on both the suction and pressure sides of the airfoil.

The most obvious outcome of this analysis is that the stall strip is very often detected as other defects
and vice-versa. Overhang, stall strip, symmetric loss/addition, backward facing step, and forward facing
steps are all very similar in nature, being some sort of bump in the geometry that lead to early transition
and potentially small separation zones. Hence, Fig. 16 confirms what was intuitively and visually inferred
from the previous sections: these defects can all be grouped together from an aerodynamic standpoint.

The cases that the NN seems to distinguish quite well (over 45% of the time) are filled overhang,
LE translation, and flat patch. As waviness is a distributed defect, geometrically quite distinct from
the other defects, we will attempt to keep it in the next sections. All other defects can be grouped into
a single group. However, as we have seen in the previous sections, symmetric loss/addition has some
special features which we will address in the next sections.

5.2 Testing the model for different airfoils
We now test the NN from the previous section, which was built on data from the NACA 633-418 airfoil,
with the DU96-w-180, Risø B1-18, and Risø C2-18 airfoils, which are also part of the data set. All data
for these airfoils are with the stall strip defect only. The DU96-w-180 and Risø C2-18 airfoils are designed
with different goals from the NACA 633-418 and Risø B1-18 airfoils. The aerodynamics should be less
sensitive to transition.

The number of cases tested and successfully detected by the NN are shown in Fig. 17. We see that
the NN correctly predicts the defects to be stall strips with reasonable accuracy for the Risø B1-18 and
Risø C2-18, but fails most of the time for the DU96-w-180. As this airfoil is significantly different from
the training data, this is somewhat expected. The success for the Risø C2-18 is surprising.

The same heatmap analysis from before is shown for the airfoil cases in Fig. 18. The stall strip is
the most often predicted defect type and the accuracy is similar to the previous section, albeit higher.
Interestingly, the three stall strip lines in Fig. 18 and the stall strip line in Fig. 16 are all different, with
different defects appearing more prominently for different lines.
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Figure 16: Mean probability the NN associates with each defect type for each defect type.

Figure 17: Number of cases and correct predictions using the NN, per defect type.

Figure 18: Mean probability the NN associates with each defect type for each defect type.
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5.3 Reducing the number of defect categories
As we have consistently seen in the previous sections, the overhang, stall strip, slot, backward facing
step, and forward facing steps are very similar, both geometrically and aerodynamically. These are all
variations of localized steps in the geometry. Hence, we could combine them all into one defect type.
Doing that would mean that the vast majority of our training data would fall into that single defect type.
Hence, we instead remove the overhang, slot, and steps altogether and use the stall strip data instead.

We choose to preserve the waviness and remove the symmetric loss/addition. Both are defects that
can affect both the suction and pressure sides of the airfoils, which depending on the dimensions can
behave like a stall strip or have more extreme impacts on the aerodynamics.

We now repeat the process from before, training the NN on the data set for Re=[3, 5, 10] million and
testing it for Re=7 million. These results are shown in Fig. 19. We also test the NN on the different
airfoils and results are shown in Fig. 20. The number of correct predictions is dramatically improved
from the previous analysis, being correct well over 70% of the time, indicating that the defects have
distinct aerodynamic behavior. The Risø B1-18 airfoil is correctly assessed almost every time. Filled
overhang, LE translation, and stall strips are also very well captured. Waviness and flat patches are
more difficult to distinguish from the other defect, but are still correctly categorized most of the time.

Figure 19: Number of cases and correct predictions using the NN, per defect type. Reynolds number
case.

Figure 20: Number of cases and correct predictions using the NN, per defect type. Other airfoils case.

Fig. 21 shows the scatter plots for the aerodynamic parameters, now restricted to the reduced list of
defect types and focusing on the parameters that ilustrate the differences best, for clarity and brevity.
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Results are much more clustered than in Fig. 2. LE translation is clearly its own category, especially
when observing at ∆max(Cl/Cd) vs ∆Cl(α = 0◦). Flat patch cases can be grouped with small stall
strips that lead to small ∆α@Cl = 0, which correspond to stall strips near x/c= 0 (see Fig. 6), which
is where the flat patch is most effective at disrupting the aerodynamics (see Fig. 7). Filled overhang
cases can be grouped with stall strips that have ∆max(Cl/Cd) = 0, which are cases where the stall
strip is slightly towards the pressure side of the LE (see Fig. 6), where the filled overhang occurs.
Looking at ∆max(Cl/Cd) vs ∆Cl(α = 0◦), the stall strip cases seem to fall within two major groups,
one with higher values of ∆Cl(α= 0◦), and one with lower values. The first are associated with stall
strip positioned towards the suction side, while the latter is associated with cases where the stall strip is
on the pressure side (see Fig. 6). Finally, waviness behaves like the stall strip, disturbing the sensitive
region towards the suction side of the LE, but as the waviness amplitude increases, some aerodynamic
parameters (∆Cl(α=0◦), ∆min(Cd)) suddenly jump to more extreme ranges compared to the stall strip.
This occurs when waviness becomes large enough to disturb the pressure side, as even modest values can
disturb the suction side. The higher sensitivity to waviness on the suction side can be noticed in Fig. 14.
Note from Fig. 2 that symmetric loss/addition can overlap with the waviness results, as it also affects
both sides of the airfoil.

Figure 21: Scatter plots for all selected parameters, colored by defect type. Transitional cases only,
Re = [3, 5, 10] million.

The data indicate that local defects could be classified in terms of their position relative to the LE,
with defects at the LE behaving slightly different from defects towards the pressure or suction sides.
This is only valid for surface quality defect types, with LE translation requiring its own category. Note
also that the overhang can behave similar to a filled overhang at low values, but at large negative values
it behaves more like a stall strip (see Figs. 2 and 3). Hence, barring special cases like LE translation,
defects that cause disturbances to the boundary layer, like early transition and, in more extreme cases,
separation, can be classified in terms of their location relative to the LE.

To verify the LE distance clustering hypothesis, we look at the scatter plots again in Fig. 22, where
we now color the cases defined by a localized step (stall strip, slot, backward facing step, and forward
facing step) by their distance to the LE. We can clearly see aligned sets of dark blue cases, furthest
towards the suction side, and clusters of dark red cases, furthest to the pressure side, with the grey cases
in between also showing grouping patterns. We also show the waviness and symmetric loss/addition in
green, demonstrating that they can behave like more extreme cases of the suction side steps, as they
disturb both sides of the airfoil.

Figure 22: Scatter plots for stall strip, slot, backward facing step, and forward facing step, colored by
distance to the LE, where blue is towards the suction side, red towards the pressure side, and white on the
LE. Cases with defects on both sides, waviness and symmetric loss/addition, are in green. Transitional
cases only, Re = [3, 5, 10] million.
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6 Conclusions
Most LE defects included in this work serve as transition strips and have similar effects on aerodynamics,
with the largest impact on Cl/Cd. Classifying LE defects based on their visual properties is less useful,
from a power production point of view, than classifying them based on their aerodynamic effects.

From the original 11 defects in the data set analyzed here, we believe that from an aerodynamics
point of view it is appropriate to group all defects with surface steps together. LE translation is clearly
unique compared to the other defects, as it changes the airfoil camber. Grouping surface imperfections
(e.g. steps) defects based on the distance from the LE (i.e., on the LE, towards the pressure side, towards
the suction side, or on both sides of the LE) seems to be the most adequate way to categorize these
defects under aerodynamic considerations. The height of the defects also plays a role and can be used
to help establish the severity of the defect within a category.

From a blade maintenance point of view, identifying steps near the LE from photographs captured by
drones is relatively simple. Then, by quantifying the distance from the LE, one could quickly estimate
how aerodynamically meaningful the defect is.

Finally, from an operations point of view, the conclusion that LE erosion at the LE or on the pressure
side is preferred over erosion on the suction side could lead to different approaches to how to handle above
rated wind speeds. Pitching the blades to reduce the angle of attack would lead to enhanced erosion
on the suction side, hence other options for lift control (e.g. the use of flaps) might have durability
advantages. If negative angles of attack are unavoidable, especially during rain (instead of reducing the
blade tip speed, applying leading edge protection on a larger extent of the blade suction side could be
valuable in reducing maintenance costs.

The analysis conducted here was limited to the numerically generated LE defects data set and different
defect types or more extreme dimensions of the defects could lead to different conclusions. Future work
could focus on extending the analysis to larger data sets, including experimental sources. Another
limitation of the current work is that the defects investigated were obtained from 2D simulations. In real
blades, erosion often happens near the tips, where 3D effects can play a role. The differences between
LE defects in 2D airfoils and blade tips could be a topic for future studies.
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