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Abstract:
This extended abstract presents preliminary results for a parallel, multigrid-accelerated solver de-
veloped for solving the Reynolds-Averaged Navier-Stokes (RANS) equations on block-structured
Cartesian grids. Utilizing the cut-cell method to handle complex geometries, the solver is optimized
for efficient execution on modern heterogeneous computing architectures with the help of AMReX
framework. Validation tests for lid-driven cavity flow, with and without an embedded sphere,
demonstrated second-order accuracy. The solver shows excellent multigrid performance and par-
allel scaling on CPUs, with ongoing optimization efforts to improve GPU utilization. Future work
will focus on dynamic load balancing, integration of turbulence models with wall functions, and
implementation of adaptive mesh refinement.
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1 Introduction

Urban areas currently house approximately 55% of the global population, a figure projected to rise to
68% by 2050 [1]. As this shift continues, understanding the intricate processes governing air quality and
local weather becomes increasingly important. High population density and limited evacuation options
in urban areas heighten the risks of human exposure to airborne contaminants. Consequently, ensuring
security and rapid response capabilities for accidental or intentional releases of chemical, biological, or
radiological substances is a pressing challenge in these densely populated areas. In the event of such an
emergency, the application of an urban dispersion model becomes crucial for emergency management
protocols and decision-making frameworks [2]. Such a system must possess short latency times to enable
swift actions.

Computational Fluid Dynamics (CFD) models can offer detailed insights into flow and dispersion
processes in urban environments [3]. However, traditional CFD models are often computationally ex-
pensive for dispersion modeling in urban areas, where rapid turnaround times are essential. Fast models
are essential for applications like emergency response, vulnerability assessments, and optimal sensor
placement [4].

Achieving fast physics-based modeling requires leveraging both fast numerical methods and efficient
parallel computing. Consequently, the next generation of urban dispersion modeling must integrate both
computational efficiency and high-performance computing capabilities.

Multigrid schemes are a widely recognised approach used for accelerating convergence of iterative
methods. It capitalizes on the fact that high-frequency components in the solution-error vector decay
much faster than low-frequency components. By treating low-frequency error components on a fine mesh
as high-frequency errors on a coarse mesh, multigrid can efficiently remove these errors, leading to faster
convergence. Recent work by Ryan et al. [5] and Lien et al. [6] have demonstrated the effectiveness of
multigrid in the context of urban dispersion problems.

Our study focuses on leveraging multigrid algorithms on modern heterogeneous hardware to tackle
large-scale urban dispersion problems. Developed in C++ using the AMReX framework [7], our solver
aims to combine the multigrid method with automatic mesh generation and refinement, embedded ge-
ometry via the cut-cell method, and integrate turbulence and thermal models with wall treatment. Our
goal is to accelerate convergence using parallel heterogeneous hardware. This extended abstract presents
our initial findings on incorporating the cut-cell method and utilizing parallel computing while using
multigrid.
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2 Numerical Method

The steady-state, incompressible Reynolds-averaged Navier-Stokes equations are

∂(ρūj)

∂xj
= 0, (1)
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where ūi are the Cartesian components of the mean velocity vector, p̄ is the mean pressure, ρ is density,
µ is dynamic viscosity, and u′

iu
′
j are the mean turbulent Reynolds stresses. The equations are discretized

in space using a finite volume formulation with a collocated arrangement of variables. Pressure-velocity
coupling is achieved through the SIMPLE scheme. Second-order central discretization scheme is used for
diffusion terms, pressure gradient source term in the momentum equations, and the pressure correction
equations. Convective fluxes through the faces are evaluated using a first-order upwind scheme, with
higher-order of accuracy achieved using deferred correction. More detailed information regarding the
discretization process and the SIMPLE algorithm can be found in the book by Ferziger and Perić [8].
For simplifying notation, the over-bar on the variables will be omitted henceforth.

2.1 Cut-Cell Discretization

Special numerical treatment is required for grid cells next to an embedded boundary. These cells are
truncated to fit the boundary, as shown in Figure 1. The truncated cells require modifications to the
finite volume discretization to account for the presence of a rigid boundary. The new discretization is
based on the geometry of the irregular control volumes, which are characterized by integral quantities,
also referred to as embedded fractions. The discretization on these partial cells are based on these
embedded fractions. AMReX provides helpful data structures for accessing these embedded fractions,
which are precomputed for each multigrid level. This information includes cell volume fraction, face area
fractions, cell centroid, face centroid, and connectivity information between neighboring cells. Additional
information, such as the surface normal and area of the cut boundary, can be easily computed from these
quantities [9, 10].

The current implementation only supports a single cut boundary feature per cell. While this limitation
can be addressed using multi-cut cell methods, as outlined in [11], this is currently outside the scope of
this study. More details regarding the computation of integral fractions can be found in [9, 10].

(a) (b)

Figure 1: (a) Diagram shows truncated cells next to an embedded boundary, highlighted with red borders. (b)
illustrates the control volume and fluxes which are centered on the face-centroid. Here Fb denote the centered
flux at the cut-boundary.

2.1.1 Divergence operator

The finite volume approximation of the divergence of a flux F in a cut-cell is given by

∇ · F ≈ 1

∆DV

Nf∑
f=1

(Ff · nf )Af , (3)
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where ∆ is the grid spacing, D is the number of space dimensions (2 or 3), V is the volume fraction
of the cut-cell, nf is the outward pointing unit normal, and Ff and Af denote the fluxes and effective
areas of the faces as indicated in Figure 1 respectively. The discrete fluxes are located at the centroid
of the faces. In the context of incompressible Navier-Stokes, these discrete fluxes Ff correspond to the
non-linear advection flux and viscous diffusive flux. The following sections outlines the computation of
these fluxes.

(a) (b)

Figure 2: Graphical representation of the methodology for computing (a) boundary gradient and (b) face fluxes
in a cut-cell. Here indicates the interpolation points used for constructing the quadratic profile, are the active
cell points used for the linear interpolation, and is the location of the face-centroid.

2.1.2 Computation of cut-face gradients

At cut-faces, gradients are computed at the cell centroid using the method outlined in Johansen and
Colella [12]. In this approach, the solutions is thought to be located at the cell-center of the original
uncut cell, not at the cell-centroid. The diffusive and convective gradients are normally computed at
the midpoint of the uncut face. Then the face gradient is computed using linear interpolation (bilinear
in 3D), at the face centroid, using the face gradients of the neighbouring faces located in the direction
orthogonal to the cut face normal. The figure illustrates this interpolation process for a 2D cut-cell. It
should be noted that deferred correction is not applied on truncated cells.

2.1.3 Computation of cut-boundary gradients

For computing the cut-boundary gradients, two cases arises depending on the boundary conditions.
Neumann boundary conditions are trivially imposed. For Dirichlet boundary condition, a quadratic
polynomial is fitted in the normal direction and the flux is computed by taking the derivative at the
face [12]. This scheme in 2D outlined as follows and also illustrated in the Figure 2

Fb =
1

d2 − d1

(
(ϕf − ϕI

1)
d2
d1

− (ϕf − ϕI
2)
d1
d2

)
. (4)

Here, ϕf is the Dirichlet boundary value on the cut boundary, ϕI
1 and ϕI

2 are computed using bilinear
interpolation at distances d1 and d2 from the boundary respectively. These interpolation points are
located on lines joining the cell-centers.

2.1.4 Computation of cell-centroid gradient

The current implementation only supports cell-centroid gradients for irregular cells with Neumann bound-
ary conditions. These gradients are used to compute pressure source terms in the momentum equations.
Using the standard Green-Gauss gradient, given by

∇ϕ =
1

∆DV

Nf∑
f=1

ϕfnfAf , (5)

where ϕf is the average face-centroid value, leads to numerical instabilities as the gradient can become
singular as V → 0. To avoid this issue, the gradients are instead computed using the following methods.
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Re-centering : In this approach, the approximate gradient is calculated at the cell-center of the original
uncut cell. The cell-center gradient is computed by taking the average of the face-center gradients. Then,
the cell-centroid value is obtained by linear interpolation (bilinear in 3D) using the cell-center gradients
of the neighboring cells. Figure 3 illustrates the scheme for a cut-cell in 2D.

Least squares: In this approach, the gradients at the cut-cell centroid are obtained by a least squares
formulation, which results in a system of linear equations at each cut-cell centroid:

ALSX = bLS(ϕnb), (6)

where ALS is a 3 × 3 matrix dependent only on the distances between cell-centroids, and X is the
solution vector that contains the cell-centroid gradient. The neighborhood cell-center values used in the
least squares minimization are indicated in Figure 3. Here, the fluid region for minimization is selected
by centering a 3D cell region at the cut-cell and then shifting it to the corner based on the direction of the
cut-boundary surface normal. Note that the values of ϕnb are assumed to be located at the cell-center
of the uncut cell. The above linear equation is solved using QR decomposition outlined in [13]. Lastly,
the stencils for gradients are precomputed at the start of the simulation.

(a) (b)

Figure 3: Graphical representation of the methodology used for computing cell-centroid gradient. Here (a)
illustrates the re-centering approach, while (b) highlights the cell values used for least-squares gradient. The
indicates the location of the cell-centroid gradient.

2.2 Multigrid

The steady state solver uses Full Approximation Scheme (FAS) multigrid, which accelerates convergence
by efficiently eliminating errors at various scales. The SIMPLE algorithm is used for smoothing at each
coarsened multigrid level.

Our implementation of FAS multigrid is standard, whose details are available in [14]. On partial cells,
the coarse cell volume is the sum of its corresponding 4 (8 in 3D) fine-cell volumes. Grid coarsening
can introduce cells with multiple cuts, a scenario that is currently not supported. Furthermore, the
quadratic stencil used for interpolation imposes additional constraints, as it must not extend into cells
with zero volume. These restriction can be violated on very coarse grids, thereby determining the number
of allowable coarse grid levels.

The residuals and variables are restricted to the coarse grid using volume-weighted averaging, ensuring
that source terms are weighted appropriately. The coarse grid equations are discretized using the same
approach as the fine grid. The solution on the coarsest grid is solved to a relative residual of 10−1.
Testing indicated that using smaller values did not result in improved convergence. The coarse grid
corrections are moved up the grid hierarchy using linear interpolation, with piece-wise constant injection
used for partial cells. If the coarse grid solver fails to converge or diverges, the solution in the coarse
grid is discarded, and the cycle continues to the next fine level. Additionally, if a coarse level diverges in
multiple multigrid cycles, that level is eliminated.

3 Parallelism

The solver leverages AMReX’s design architecture to achieve parallelism. The computational domain is
divided into rectangular boxes, which are distributed to processors using an algorithm based on space-
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filling curves. Stencils are implemented for cell-wise, face-wise, or node-wise operations, and can be
compiled to run on either CPUs or GPUs [10, 7].

AMReX employs an MPI+X strategy for parallelism, where X represents additional parallelization
techniques such as tiling. On CPUs, thread-level parallelism is achieved using OpenMP. For GPUs,
AMReX utilizes either CUDA, HIP, or SYCL libraries to perform stencil operations using GPU threads.
This versatile approach ensures efficient use of computational resources across different hardware archi-
tectures. More details regarding the performance portability of AMReX can be found here [10, 7].

Currently, our multigrid implementation operates with the constraint that a coarse grid level is
handled by the same processors responsible for the corresponding fine grid level. This approach simplifies
restriction and prolongation operations, avoiding the need for inter-processor communication. However,
we aim to relax this constraint in the future. It is important to note that our domain decomposition
strategy, which divides the grid into rectangular boxes assigned to processors, cannot guarantee perfectly
even load distribution for all processor counts. This inherent limitation places some restrictions on the
number of MPI processes that can be used efficiently.

4 Results & Performance

4.1 Order of accuracy

4.1.1 3D Lid driven cavity

The spatial order of accuracy of the scheme was tested for a cubic lid-driven cavity (LDC) flow. The
cubic cavity measures 1 unit length, with the lid moving at a velocity of 1 unit per time in the x direction.
The kinematic viscosity is defined as 1/Re, where Re is the Reynolds number based on the cavity length
and the lid velocity. The flow was solved on uniform grids starting from 163 to 2563, where the number
of cells was successively doubled in each coordinate direction, for Reynolds numbers 10 and 1000. The
problems were solved to a residual of 10−11 using the multigrid method.

The convergence of the solution was evaluated by calculating the L2 and L∞ norms of the relative
differences between solutions on successive grids. The norms for velocity components and pressure are
plotted against the cell size as shown in Figure 4. Convergence in the asymptotic region of the L2 and L∞
norm curves for the velocity is second-order, showing that the scheme is globally second-order accurate.
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Figure 4: Convergence test for a cubic lid-driven cavity at different Reynolds numbers. (a) corresponds to Re
= 10 and (b) to Re = 1000. The L2 and L∞ norms are represented by hollow ( , , , ) and filled markers ( ,
, , ), respectively.

4.1.2 3D Lid driven cavity embedded with a sphere

For testing the order of accuracy of the cut-cell discretization, the lid-driven cavity case was modified
to include a sphere of diameter 0.4 centered in the domain. To ensure that the norms represent the
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errors of the boundary cell discretization, the errors were computed only within a cubic region of size 0.6
surrounding the sphere. Velocity and pressure were sampled on 503 uniformly distributed points using
cubic spline interpolation. When computing the relative error between successive grids, the interpolating
points lying on covered and partial cells of the finer grid were removed from both grids. These points
were excluded because fine grid cut-cells can extend into coarse grid covered cells, leading to inconsistent
results for L∞ norm. Evaluating the errors at partial cells would require an an exact solution.

Results for Reynolds numbers 10 and 400, where the Reynolds number (ReD) is based on the lid
velocity and sphere diameter, are shown in Figure 5. Convergence in the asymptotic region of the L2

and L∞ norm curves for the velocity is second-order, showing that the scheme is globally second-order
accurate.

To further validate the results, the solution obtained from our solver is compared with OpenFOAM,
a widely used open-source CFD software. The problem was meshed using a block-structured Cartesian
grid with inflation layers around the sphere and domain walls to accurately capture boundary layer
effects. The final mesh consisted of ≈ 16 × 106 cells, providing sufficient resolution to ensure accurate
results. The convergence criterion for the simulation was set to a residual of 10−11.

Figure 6 shows the difference in velocity between our implementation and OpenFOAM along three
lines that touch and intercept the embedded sphere for ReD = 400. It is clear that the near wall
characteristics are well captured by the cut-cell discretization. Our scheme solved the problem on 2563 ≈
16.7× 106 cells.

(a)

10−3 10−2

Cell size ∆

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
rr

or

1st Order Line

2
nd Order Line

u

v

w

p

(b)

10−3 10−2

Cell size ∆

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E
rr

or

1st Order Line

2
nd Order Line

u

v

w

p

Figure 5: Convergence test for a cubic lid-driven cavity embedded with a sphere at different Reynolds numbers.
(a) corresponds to ReD = 10 and (b) to ReD = 400. The L2 and L∞ norms are represented by hollow ( , , ,
) and filled markers ( , , , ), respectively.

4.2 Parallel and Multigrid performance

According to Brandt’s golden rule for multigrid [14], an efficient multigrid solver shows linear dependence
in computational work, i.e., it exhibits O(N) scaling in computational work where N is the number of
cells. The solver was tested on the LDC (with and without embedded sphere) flow across various
Reynolds numbers. The results, illustrated in Figure 7, clearly indicate optimal scaling behavior. The
cases were solved to a residual of 10−8 using the QUICK scheme with 32 CPU cores. Slight deviations
from the optimal trend in solution time were observed, which can be attributed to the variations to the
number of multigrid cycles to achieve a converged solution. In cases where additional multigrid cycles
were required, the final residual was well below the target residual.

Parallel scaling tests were carried out for the LDC scenario with Reynolds number 500. As depicted
in Figure 8, the multigrid implementation showed excellent weak and strong scaling performance. The
strong scaling study was conducted with a grid resolution of 5123 ≈ 134 × 106 cells. The tests were
done for 2n processors, where n ∈ [3, 9]. A slight slowdown was was observed for 210 processors. This
drop-off in efficiency was expected since the compute load per processor was too small. It should be
noted that these cases result in an uneven distribution of compute load, as the domain is decomposed
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Figure 6: Absolute error in velocity magnitude between our and OpenFOAM solution. The lines span the range
y ∈ [0.2, 0.8]. Line 1 is centered at x = 0.5, z = 0.5, Line 2 at x = 0.5, z = 0.7, and Line 3 at x = 0.6, z = 0.6.
(b) illustrates the locations of these lines within the domain. The errors are computed for ReD = 400.
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Figure 7: Multigrid scaling with respect to cell count for LDC flow at various Reynolds numbers. (a) depicts
the standard LDC flow, while (b) shows the LDC flow with an embedded sphere of diameter 0.4.

into rectangular boxes which are distributed to processors.
For weak scaling tests, a configuration of 1283 ≈ 2×106 cells per core was employed, with the largest

case comprising approximately 2 × 109 cells. The tests were done for n3 processors, where n ∈ [3, 10].
The base case for the weak scaling was selected such that the subsequent cases involved more that one
compute node. These scaling tests were performed on dual 24-core Intel Xeon Platinum 8274 (Cascade
Lake) processors per node on the NCI Gadi cluster located at the Australian National University.

Parallel GPU performance was also assessed for the LDC case, although with less promising scaling
results. The execution time on multiple GPUs is summarized in Table 1. Although some speedup is
observed when using multiple GPUs, the speedup is far from ideal due to two main reasons. First, GPU
memory bandwidth is far greater than inter-socket or inter-node communication bandwidth. When
using multiple GPUs, it is essential that the problem size is large enough so that the computational
workload on each GPU significantly outweighs the communication overhead between GPUs. This is
indicated in the execution times, where larger problems generally show better scaling when solved with
more GPUs. Second, grid coarsening can lead to problems that are too small to fully utilize the GPU
threads. When the grid is coarsened, the number of cells decreases (by a factor of 8 in 3D), resulting
in fewer computational tasks. GPUs are designed to handle a large number of parallel tasks efficiently,
and when the grid size becomes too small, the overhead of managing GPU threads can outweigh the
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Figure 8: Parallel Multigrid scaling for LDC flow at Re = 500. (a) depicts strong scaling, while (b) shows weak
scaling.

benefits of parallelism. This issue is further exacerbated when the problem is divided across multiple
GPUs. Currently, two strategies are being explored to tackle these issues. The first is to agglomerate
the coarse grid problem to a single GPU to reduce inter-GPU communication. The second strategy is to
solve the coarse grid problem on CPUs instead of GPUs.

The execution time when run on CPUs is also provided in Table 1. While GPUs demonstrate
significantly faster execution time when compared to CPUs, drawing meaningful conclusions between
the two is challenging due to differences in architecture. This architectural difference means that a direct
comparison can be misleading.

These tests were conducted at the Pawsey Setonix super-computing cluster, located in Perth, Western
Australia [15]. The GPU tests were conducted on compute nodes equipped with eight AMD Instinct
MI250X GPUs, while the CPU test were performed on nodes with dual 2.45 GHz AMD EPYC 7763
Milan 64-Core CPUs.

Table 1: Execution time for the LDC problem for Re = 500 with varying grid sizes and number of GPUs. Speedup
values, shown in parentheses, are calculated relative to the preceding column, indicating the performance gains
achieved by increasing the number of GPUs. Entries marked – indicate cases where the problem size exceeded
GPU memory.

Case
Execution Time (seconds)

1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs 256 CPUs

3203 37.1(1.00×) 33.5(1.10×) 29.5(1.14×) 26.4(1.12×) 32.6(0.81×) 48.83
3843 42.7(1.00×) 32.6(1.31×) 27.3(1.19×) 23.5(1.16×) 22.3(1.05×) 89.25
5123 – 58.6(1.00×) 42.2(1.39×) 32.5(1.30×) 27.7(1.17×) 128.8
6403 – – 64.8(1.00×) 45.6(1.42×) 36.0(1.26×) 259.4
7683 – – – 69.3(1.00×) 51.2(1.35×) 590.2

5 Conclusions and Future Work

This work represents an ongoing effort to develop a high-performance solver for simulating fluid flow and
dispersion in complex urban environments. A parallel, multigrid-accelerated steady-state solver using
the cut-cell method has been introduced, demonstrating second-order accuracy and showcasing excellent
multigrid and parallel scaling performance on CPUs. While parallel GPU performance shows promise,
further optimization is required to fully utilise modern GPUs.

These promising results lay the groundwork for the further development of the solver. Future work
focuses on incorporating turbulence models with wall functions, adaptive mesh refinement, thermal
model, and enhancing load balancing.
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