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1     Introduction 

Kinetic Energy and Entropy Preserving (KEEP) scheme [1,2] is a recently proposed scheme that 

enables long-time stable calculations of turbulence without artificial viscosity by conserving kinetic 

energy and entropy, and it shows effectiveness from analyses on the framework using the Building-

Cube-Method (BCM) [3]. To fully exploit the conservative property of the KEEP scheme, the 

conservation at the wall boundary must be satisfied. The immersed boundary method (IBM) is a wall 

modeling method, particularly useful for complex geometries. However, IBM does not usually satisfy 

the conservatism of the system, and the properties of the KEEP scheme may not be exploited due to 

inadequate conservation at the walls. Thus, investigating the conservative properties of IBM on a 

conservative scheme like KEEP scheme is essential. In this study, the KEEP scheme and the ghost-cell 

type IBM were implemented in the compressible BCM framework CUBE [4] and evaluated their 

performance. 

 

2     Immersed Boundary Method 

The ghost-cell type IBM [4-6] is utilized in this study. As shown in Figure 1, the cell adjacent to the 

wall is denoted as the interface cell (IC). Then, the intersection point, where a perpendicular line drawn 

from the center of the IC and the wall surface, is defined as the wall point (WP), and the symmetrical 

point from IC across WP is the virtual point (VP). The value at VP 𝜙𝑉𝑃  is derived through linear 

interpolation from the values of the adjacent four cells (eight in 3D), and the values at the IC 𝜙𝐼𝐶 are 

determined as follows, 

 𝜙𝐼𝐶 = 𝜙𝑉𝑃                  (Neumann conditions) (1) 

 𝜙𝐼𝐶 = 𝜙𝑊𝑃 + 𝑑
𝜕𝜙

𝜕𝑛
      (Dirichlet conditions) (2) 

here, 𝑑 is the distance between IC and WP, 𝑛 is the normal vector of wall surface at WP. 

Meanwhile, the approaches to the IBM as R. Ghias [5] and C. G. Li[4,6] exhibit variations in the 

placement of the IC. Ghias' method, called ‘ghost-cell IBM’, treats the IC as a ghost cell, deriving 

values from the opposite fluid and IC is calculated by solving the Navier-Stokes equation. Conversely, 

Li’s approach, called ‘direct interpolation IBM’, acquires the value of IC through interpolation. In the 

ghost-cell IBM, the conservation law by the Navier-Stokes equation is taken into account for the entire 

fluid domain. However, this approach requires more memory allocation when both sides of the wall are 



 ICCFD12

Twelfth International Conference on        
Computational Fluid Dynamics (ICCFD12), 
Kobe, Japan, July 14-19, 2024 

 

 

 2 

considered, because it is necessary to prepare values as fluid and as solid in the same cell. 

 
Figure 1 Differences between the two types of IBM 

 

3     Numerical Test 

Using the KEEP scheme along two IBMs, the conservation of mass and total energy was assessed by 

the wall-bounded Taylor-Green vortex(WTGV) [7]. The initial velocity and pressure field are given by  
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with 𝐿(= 1)  is the reference length, 𝛾(= 1.4)  is the heat capacity ratio, 𝑀0(= 0.05)  is the mach 

number, and 𝜌0(= 1.0) is the initial density. The Reynolds number based on the reference length is 

𝑅𝑒 = 𝜌0𝑀0𝐿/𝜇 =1600. The computational domain is (2𝜋)3 box.  The TGV has periodic boundarys in 

each direction, while the WTGV sets up two parallel walls with boundaries at velocity 0. In this case,  

 (𝑢, 𝑣, 𝑤)|𝑧=0 = 0 
(𝑢, 𝑣, 𝑤)|𝑧=2𝜋 = 0 (7) 

To physically satisfy conservation of mass and energy in the system, neumann boundary conditions are 

imposed on pressure and density. 

 𝜕𝜌

𝜕𝑧
|𝑧=0,2𝜋 = 0 (8) 

 𝜕𝑝

𝜕𝑧
|𝑧=0,2𝜋 = 0 (9) 

The boundary condition (7)~(9) are modeled by two types of IBMs. The third-order Runge-Kutta 

method was used for time integration. The computational grids used were 323, 1283, and 2563 cells. 

The CFL was 0.21 in all cases. 

Figure 2 shows the time evolution of mass and total energy of TGV and WTGV. At first, it can be 
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seen that in normal TGV where all boundaries are periodic, mass and total energy remain unchanged 

from their initial values at any resolution, indicating that the KEEP scheme is well conserved.  However, 

the direct interpolation IBM shows a significant reduction in mass and a corresponding reduction in 

total energy in the coarse resolution case of 323 cells. This conservation improves as the resolution 

increases. On the other hand, the ghost-cell IBM conserves mass and total energy even in the low 

resolutions case of 323 cells, showing better conservation than the direct interpolation ghost cell even 

when the walls are not fully resolved. At the conference, the usefulness of the scheme in other 

application problems will be discussed. 

 

 

 
Figure 2 Time evolution of mass(left) and total energy (right) in TGV and WTGV. 
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