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Abstract: This study seeks the logarithmic mean approximations in the numerical fluxes for the
kinetic-energy and entropy preserving (KEEP) schemes that enhances the entropy conservation
property while maintaining the pressure equilibrium. The present analyses show that the geometric
mean serves as a better approximation of the logarithmic mean than other mean values. We propose
asymptotic expansions of the logarithmic mean based on the geometric mean, and the improved
entropy conservation property of the proposed spatial discretization is validated theoretically and
numerically.
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1 Introduction
The use of non-dissipative and stable numerical schemes is crucial for high-fidelity flow computations.
While the kinetic energy preserving (KEP) schemes [1, 2] are widely recognized as such schemes, the
kinetic-energy and entropy preserving (KEEP) schemes [3, 4] have been proposed and significantly im-
prove numerical robustness for compressible flows simulations compared to the KEP schemes.

In addition to the entropy conservation [5, 6], the pressure equilibrium preserving (PEP) [7] is an
important flow physics for high robustness of a numerical scheme for compressible flows. In this context,
for example, asymptotically entropy conservative (AEC) schemes have been proposed by De Michele &
Coppola [8] using the arithmetic and harmonic means for the approximation of the logarithmic mean in
the mass and internal-energy fluxes, respectively, so that the derived spatial discretization satisfies the
PEP. Their work motivated us to analyze the PEP and entropy conservation properties simultaneously
to enhance the entropy conservation property of the KEEP schemes while maintaining the PEP.

The objective of this study is to improve the entropy conservation property of the KEEP schemes by
theoretically deriving suitable logarithmic mean approximations while maintaining the PEP property.
For this purpose, we investigate the entropy conservation property for different logarithmic mean ap-
proximations that satisfies the PEP. Given the results of the present analyses, we propose a new class of
the KEEP schemes using asymptotic expansions of the logarithmic mean based on the geometric mean.
The present analyses are validated by the numerical experiments for the one-dimensional (1D) density
wave advection and for the three-dimensional (3D) compressible inviscid Taylor–Green vortex. More
details of the present analyses are presented in Ref. [9].

2 Governing Equations and Spatial Discretization
The governing equations are the following Euler equations for the inviscid compressible flows:

∂ρ

∂t
+

∂ρuj

∂xj
= 0, (1)

∂ρui

∂t
+

∂ρuiuj

∂xj
+

∂pδij
∂xj

= 0, (2)

∂E

∂t
+

∂ρeuj

∂xj
+

∂ρkuj

∂xj
+

∂puj

∂xj
= 0, (3)
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where ρ is the density, ui is the velocity component in the i direction, p is the static pressure, δij is
Kronecker’s delta, and the total energy E is given by the sum of the kinetic energy ρk and the internal
energy ρe, i.e.,

E = ρk + ρe = ρ
uiui

2
+

p

γ − 1
, (4)

where γ = 1.4 is the specific heat ratio.
In this study, we consider the governing equations in Eqs. (1)–(3) in the spatially discretized form

with half-point numerical fluxes as

∂ρ

∂t

∣∣∣∣
m

= −Dj |m(Cj), (5)

∂ρui

∂t

∣∣∣∣
m

= −Dj |m(Mij)−Dj |m(Πij), (6)

∂E

∂t

∣∣∣∣
m

= −Dj |m(Ij)−Dj |m(Kj)−Dj |m(Pj), (7)

where

Cj ≡ ρuj , Mij ≡ ρuiuj , Πij ≡ pδij , (8)
Ij ≡ ρeuj , Kj ≡ ρkuj , Pj ≡ puj . (9)

Dj |m is a flux-difference operator in the j direction defined as

Dj |m(Fj) ≡
Fj |m+ 1

2
− Fj |m− 1

2

∆xj
, (10)

where m± 1/2 denotes the midpoint between grid points m and m± 1, and Fj is an arbitrary numerical
flux in the j direction.

3 Improvement of Entropy Conservation of KEEP Schemes with
PEP Property

In this section, the analyses of the PEP and entropy conservation properties of the KEEP schemes
presented in Ref. [9] are briefly described.

3.1 Entropy Conservation Error of the KEEP Schemes
According to Tamaki et al. [4], the entropy conservation error εj of the KEEP schemes are given by the
following equation:

εj |m+ 1
2
=

(
1

e|m+1
− 1

e|m

)
Ij |m+ 1

2
+ (γ − 1) (ρ|m+1 − ρ|m) ūj |m+ 1

2
+ (s|m+1 − s|m)Cj |m+ 1

2
, (11)

where s ≡ log p − γ log ρ is the entropy, and ϕ̄|m+1/2 ≡ (ϕ|m+1 + ϕ|m) /2 is the arithmetic mean. The
entropy is exactly conserved if the following mass and internal-energy fluxes are used:

Cj |m+ 1
2
= ρ̄log|m+ 1

2
ūj |m+ 1

2
, (12)

Ij |m+ 1
2
= Cj |m+ 1

2

(
1/e

log|m+ 1
2

)−1

, (13)

where (̄·)|m+1/2 is the logarithmic mean defined as

ϕ̄log|m+ 1
2
≡ ϕ|m+1 − ϕ|m

log ϕ|m+1 − log ϕ|m
. (14)
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Note that the mass and internal-energy fluxes in Eqs. (12) and (13) are consistent with the entropy
conservative (EC) fluxes derived by Chandrashekar [10] and Ranocha & Gassner [11]. However, the
definition of the logarithmic mean in Eq. (14) needs a local treatment to avoid division by zero, leading
to a less straightforward implementation. Thus, some approximations of the logarithmic mean consisting
of simple algebraic operations are commonly used. This study considers the following means as the
candidates for the logarithmic mean approximation:

1. the arithmetic mean

ϕ̄A|m+ 1
2
= ϕ̄|m+ 1

2
=

ϕ|m + ϕ|m+1

2
, (15)

2. the geometric mean

ϕ̄G|m+ 1
2
≡
√
ϕ|mϕ|m+1, (16)

and

3. the harmonic mean

ϕ̄H |m+ 1
2
≡ 2

(
1

ϕ|m
+

1

ϕ|m+1

)−1

. (17)

3.2 Logarithmic Mean Approximations with PEP Property
A numerical method preserves the PEP property if an initial condition with constant distributions of
pressure and velocity induces their time derivatives everywhere zero: the solution evolves as a density
wave. The PEP property of the KEEP schemes can be investigated through the following pressure
evolution equation derived by Shima et al. [7]:

∂p

∂t

∣∣∣∣
m

= −(γ − 1)Dj |m(Ij) + p|mDj |m(uj). (18)

The right-hand side (RHS) of this equation needs to be zero for the PEP property under the initial
conditions of constant velocity and pressure. By applying the general PEP condition for approximate
EC fluxes derived in Ref. [9], the following combination of mass and internal-energy fluxes, corresponding
to each logarithmic mean approximation listed in Sec. 3.1 holds the PEP property:

1. If we use the arithmetic mean for the logarithmic mean approximations,{
Cj |m+ 1

2
= ρ̄A|m+ 1

2
ūj |m+ 1

2
,

Ij |m+ 1
2
= Cj |m+ 1

2
ēH |m+ 1

2
.

(19)

This flux pair is consistent with the AEC(0) scheme proposed by De Michele & Coppola [8].

2. If the geometric mean is used for the logarithmic mean approximations,{
Cj |m+ 1

2
= ρ̄G|m+ 1

2
ūj |m+ 1

2
,

Ij |m+ 1
2
= Cj |m+ 1

2
ēG|m+ 1

2
.

(20)

This flux pair is consistent with the finite-volume method proposed by Rozema et al. [12].

3. If the harmonic mean is used for the logarithmic mean approximations,{
Cj |m+ 1

2
= ρ̄H |m+ 1

2
ūj |m+ 1

2
,

Ij |m+ 1
2
= Cj |m+ 1

2
ēA|m+ 1

2
.

(21)
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3.3 Analysis of Entropy Conservation Error for Different Logarithmic Mean
Approximations

To facilitate the discussions below, we introduce the following normalized difference value:

ϕ̂|m+ 1
2
≡ ϕ|m+1 − ϕ|m

2ϕ̄|m+ 1
2

. (22)

In this section, we briefly present the results of the evaluation of the entropy conservation error for each
PEP flux pair derived in Sec. 3.2 in terms of the leading term of the small value of ρ̂|m+1/2 and ê|m+1/2.
Hereafter, the subscript (·)|m+1/2 for the normalized difference is omitted for simplicity.

1. For the flux pair in Eq. (19) based on the arithmetic mean, the leading term of the entropy
conservation error is estimated as

εj |m+ 1
2
≈ −2

3
ρ̄|m+ 1

2
ūj |m+ 1

2

[
(γ − 1)ρ̂3 − ê3

]
. (23)

2. If the flux pair in Eq. (20) based on the geometric mean is used, then

εj |m+ 1
2
≈ 1

3
ρ̄|m+ 1

2
ūj |m+ 1

2

[
(γ − 1)ρ̂3 − ê3

]
. (24)

3. If the flux pair in Eq. (21) based on the harmonic mean is used, then

εj |m+ 1
2
≈ −4

3
ρ̄|m+ 1

2
ūj |m+ 1

2

[
(γ − 1)ρ̂3 − ê3

]
. (25)

Hence, the flux pair based on the geometric mean induces the smallest entropy conservation error of the
candidates considered in this study while retaining the PEP property.

3.4 Proposed Asymptotic Expansion of the Logarithmic Mean Based on the
Geometric Mean

The propose asymptotic expansion of the logarithmic mean based on the geometric mean is derived by
the similar approach to that based on the arithmetic mean. The asymptotic expansion based on the
arithmetic mean [8] is given as:

ρ̄log ≈ ρ̄A

(
N∑

n=0

ρ̂2n

2n+ 1

)−1

, (26)

(
1/e

log
)−1

≈ ēH
N∑

n=0

ê2n

2n+ 1
, (27)

where N is the prescribed finite truncation order. These polynomials in Eqs. (26) and (27) can be derived
from the ratio of the arithmetic mean to the logarithmic mean and the general PEP condition [9].

A similar approach leads to the asymptotic expansions based on the geometric mean as follows:

ρ̄log = ρ̄G

{[ ∞∑
n=0

(−1)n
(
1/2
n

)
ρ̂2n

] ∞∑
n=0

ρ̂2n

2n+ 1

}−1

(28)

= ρ̄G
(
1− 1

6
ρ̂2 − 11

120
ρ̂4 − . . .

)−1

, (29)

(
1/e

log
)−1

=

[ ∞∑
n=0

(−1)n
(
1/2
n

)
ê2n

] ∞∑
n=0

ê2n

2n+ 1
(30)

= ēG
(
1− 1

6
ê2n − 11

120
ê4 − . . .

)
. (31)
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Here, (
α
n

)
≡ α(α− 1)(α− 2) . . . (α− n+ 1)

n!

denotes the binomial coefficient.
Considering the present theoretical analyses, a new class of mass and internal-energy fluxes based on

the geometric mean is proposed:

Cj |m+ 1
2
= ρ̄G|m+ 1

2
ūj |m+ 1

2

(
1− 1

6
ρ̂2 − 11

120
ρ̂4 − . . .

)−1

, (32)

Ij |m+ 1
2
= Cj |m+ 1

2

(
1− 1

6
ê2 − 11

120
ê4 − . . .

)
, (33)

where the summation are truncated at a finite order N . Combined with the KEEP’s numerical fluxes
for the momentum, kinetic energy, and pressure terms [3], the proposed spatial discretization is called
the KEEP-G(N) scheme.

4 Numerical Experiments
In this section, we compare the PEP and entropy conservation properties of the following numerical
schemes: the KEEP(N) [4], the KEEP-PE [7], the AEC(N) [8], and the proposed KEEP-G(N) schemes.
The truncation order N for the asymptotic expansions is set to zero and one for each scheme.

4.1 1D Density Wave Advection
We consider the following initial flow conditions defined in the 1D computational domain [0, 1] with
periodic boundary conditions:

ρ0 = 1 + exp [sin (2πx)] , u0 = 1, p0 = 1. (34)

The computation is performed on 61 equidistant grid points, and the classical four-stage fourth-order
Runge–Kutta (RK4) scheme is used for the time integration with the Courant-Friedrichs-Lewy (CFL)
number approximately 0.01.

The instantaneous distributions of density and pressure error at t = 13 are shown in Fig. 1. It is
seen that the KEEP-PE, AEC, and proposed schemes maintain the constant pressure distributions to
machine precision. Thus, the PEP property of the proposed schemes is numerically demonstrated at each
truncation order. From Fig. 2, showing the time histories of the entropy conservation error, it is observed
that the KEEP-G schemes achieves the improvement of the entropy conservation property compared to
the existing schemes.
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Figure 1: Instantaneous (a) density and (b) pressure-error distributions at t = 13 for the 1D density
wave advection.
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Figure 2: Time evolution of the entropy conservation error for the 1D density wave advection.

4.2 3D Compressible Inviscid Taylor–Green Vortex
The initial flow conditions for this test are

ρ0 = 1,

u0 = M0 sinx cos y cos z,

v0 = −M0 cosx sin y cos z,

w0 = 0,

p0 = γ−1 +
ρ0M0

2

16
(cos 2x+ cos 2y) (cos 2z + 2) ,

where the initial Mach number M0 is 0.4 so that the compressibility effects are non-negligible. The
triperiodic domain has side length 2π in all directions and is discretized using 643 equidistant grid
points. The RK4 scheme is used for the time integration with the CFL number approximately 0.007.

The time evolution of the entropy conservation error and total kinetic energy is shown in Fig. 3. The
histories of the total kinetic energy are comparable for all the schemes investigated in this study. It is
seen that the KEEP-G(0) exhibits the better entropy conservation property than the AEC(0) and the
KEEP(0), which is consistent with the present theoretical analyses. The entropy conservation property
is further enhanced by increasing the truncation order of the asymptotic expansion of the logarithmic
mean. It is observed that the deviation of the KEEP-G(1)’s history of the entropy conservation error
from the exact solution is later than those of the AEC(1) and the KEEP(1). The present numerical
experiments demonstrate that the entropy conservation property is improved by the proposed schemes
while maintaining the PEP.
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Figure 3: Time evolution of the (a) entropy conservation error and (b) total kinetic energy for the 3D
compressible inviscid Taylor–Green vortex.
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5 Conclusions
This study has analyzed the entropy conservation and pressure-equilibrium-preserving (PEP) properties
of the kinetic-energy and entropy preserving (KEEP) schemes in the context of the approximation of
the logarithmic mean in the mass and internal-energy fluxes. Given the analytical results, a new class of
spatial discretization has been proposed using the asymptotic expansion of the logarithmic mean based
on the geometric mean. The present theoretical analyses have been demonstrated by the numerical
experiments for the one-dimensional density wave advection and for the three-dimensional compressible
inviscid Taylor–Green vortex. See Ref. [9] for more details of the present study.
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