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1 Abstract

The ideal magnetohydrodynamics (MHD) equations describe the dynamic behaviors of a perfectly con-
ducting quasi-neutral plasma. Numerical simulation of ideal compressible MHD is challenging, as it
needs to be magnetic divergence-free for general cases as well as oscillation-free for cases involving dis-
continuities. To overcome these difficulties, we propose a locally divergence-free oscillation-eliminating
discontinuous Galerkin (LDF-OEDG) method. A set of enriched polynomial basis functions that can
automatically satisfy the local divergence-free property [1] are used to approximate the solution on each
control volume. The piece-wise LDF polynomials are limited in an oscillation-eliminating (OE) procedure
[2] to suppress spurious oscillations near discontinuities. The solutions are updated by using the strong
stability preserving Runge-Kutta time integration schemes [3]. The method has the following character-
istics: (i) magnetic divergence-free; (ii) stable under normal CFL conditions; (iii) free of characteristic
decomposition; (iv) non-intrusive, simple and efficient. The implementation of the LDF-OEDG scheme
is described in Algorithm 1. The robustness and accuracy of the proposed method are validated by
several benchmark MHD cases, including the vortex problem [4] (see Table 1), the Orszag-Tang problem
[5] (see Figure 1), Rotor problem [6] (see Figure 2), etc.

Algorithm 1 LDF-OEDG for ideal compressible MHD equations.
1: function UTT'=LDF-OEDG(U?Z, 7)
2 Set UnY =U”?
3 Set SSPRK3 coefficients: ¢ =1, ¢; = i, c3 =
4 for s < 1,3 do
5: Surface and volume flux integrals in (1) to compute right-hand-side 7 (Uﬁ*sfl)
6
7
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Runge-Kutta stage update Uj,* = (1 — ¢,) UZ + ¢ (U~ + 77, (UZ=71))

OE procedure U?* = F,U,"” using the exact damping operator in (2)

Splitting of U7® into two parts: the flow field U’y and the magnetic filed B2**
Projection of B»** to obtain a LDF magnetic ﬁled B?*, as in (3)

T
10: Formation of a divergence- and oscillation-free solution U2* = (UZ;, Bg’s)
11: end for
12:  Update solution U2t = U3

13: end function
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Table 1: Accuracy test results for the vortex problem.

p PlUy Bz E
Mesh L?-error Order L2-error Order L?-error Order LZ%-error Order
16 x 16 2.12E-03 1.10E-02 1.14E-02 1.50E-02

32 x32 2.59E-04 3.03 5.92E-04 4.22 584E-04 4.28 9.88E-04 3.93
64 x 64  4.45E-05 254 5.54E-05 342 5.17E-05 3.50 1.23E-04 3.01
128 x 128 7.29E-06 2.61 7.83E-06 2.82 6.51E-06 2.99 1.86E-05 2.73

Figure 1: Orszag-Tang problem. Density contours at ¢ = 0.5 (top left), ¢ = 2 (top right), t = 3 (bottom
left) and ¢ = 4 (bottom right), respectively, computed by LDF-OEDG on a 192 x 192 mesh.
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Figure 2: Rotor problem. From top to bottom: contour plots of the density p, thermal pressure p, Mach
number [[ul|, /c and magnetic pressure ||B||§ /2, respectively. The solutions are computed on a 200 x 200
mesh. Left: LDF-DG with TVB limiter; right: LDF-OEDG.
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