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1 Abstract
The ideal magnetohydrodynamics (MHD) equations describe the dynamic behaviors of a perfectly con-
ducting quasi-neutral plasma. Numerical simulation of ideal compressible MHD is challenging, as it
needs to be magnetic divergence-free for general cases as well as oscillation-free for cases involving dis-
continuities. To overcome these difficulties, we propose a locally divergence-free oscillation-eliminating
discontinuous Galerkin (LDF-OEDG) method. A set of enriched polynomial basis functions that can
automatically satisfy the local divergence-free property [1] are used to approximate the solution on each
control volume. The piece-wise LDF polynomials are limited in an oscillation-eliminating (OE) procedure
[2] to suppress spurious oscillations near discontinuities. The solutions are updated by using the strong
stability preserving Runge-Kutta time integration schemes [3]. The method has the following character-
istics: (i) magnetic divergence-free; (ii) stable under normal CFL conditions; (iii) free of characteristic
decomposition; (iv) non-intrusive, simple and efficient. The implementation of the LDF-OEDG scheme
is described in Algorithm 1. The robustness and accuracy of the proposed method are validated by
several benchmark MHD cases, including the vortex problem [4] (see Table 1), the Orszag-Tang problem
[5] (see Figure 1), Rotor problem [6] (see Figure 2), etc.

Algorithm 1 LDF-OEDG for ideal compressible MHD equations.
1: function Un+1

σ =LDF-OEDG(Un
σ, τ)

2: Set Un,0
σ = Un

σ

3: Set SSPRK3 coefficients: c1 = 1, c1 = 1
4 , c3 = 2

3
4: for s← 1, 3 do
5: Surface and volume flux integrals in (1) to compute right-hand-side Tf

(
Un,s−1

σ

)
6: Runge-Kutta stage update Un,s

h = (1− cs)U
n
σ + cs

(
Un,s−1

σ + τTf
(
Un,s−1

σ

))
7: OE procedure Un,s

σ = FτU
n,s
h using the exact damping operator in (2)

8: Splitting of Un,s
σ into two parts: the flow field Un,s

σ,F and the magnetic filed Bn,s,∗
σ

9: Projection of Bn,s,∗
σ to obtain a LDF magnetic filed Bn,s

σ , as in (3)

10: Formation of a divergence- and oscillation-free solution Un,s
σ =

(
Un,s

σ,F,B
n,s
σ

)T

11: end for
12: Update solution Un+1

σ = Un,3
σ

13: end function

Here, ∫
K

(Uh)t ϕ
(α)
K dx+

∮
∂K

F̂ · n ϕ
(α)
K ds−

∫
K

F · ∇ϕ(α)
K dx = 0, |α| ≤ k, (1)

FτUh = U
(0)
K ϕ

(0)
K (x) +

k∑
j=1

e−τ
∑j

m=0 δmK (Uh)
∑
|α|=j

U
(α)
K ϕ

(α)
K (x), (2)

Bn+1
h =

9∑
l=1

B
(l)
K ψ

(l)
K , B

(l)
K =

∫
K
Bn+1,∗

h ·ψ(l)
K dx∫

K
ψ

(l)
K ·ψ

(l)
K dx

. (3)
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Table 1: Accuracy test results for the vortex problem.
ρ ρux Bx E

Mesh L2-error Order L2-error Order L2-error Order L2-error Order

16× 16 2.12E-03 1.10E-02 1.14E-02 1.50E-02
32× 32 2.59E-04 3.03 5.92E-04 4.22 5.84E-04 4.28 9.88E-04 3.93
64× 64 4.45E-05 2.54 5.54E-05 3.42 5.17E-05 3.50 1.23E-04 3.01
128× 128 7.29E-06 2.61 7.83E-06 2.82 6.51E-06 2.99 1.86E-05 2.73

Figure 1: Orszag-Tang problem. Density contours at t = 0.5 (top left), t = 2 (top right), t = 3 (bottom
left) and t = 4 (bottom right), respectively, computed by LDF-OEDG on a 192× 192 mesh.
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Figure 2: Rotor problem. From top to bottom: contour plots of the density ρ, thermal pressure p, Mach
number ∥u∥2 /c and magnetic pressure ∥B∥22 /2, respectively. The solutions are computed on a 200×200
mesh. Left: LDF-DG with TVB limiter; right: LDF-OEDG.
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