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Abstract: This study aims to give a comprehensive analysis of current stabilization techniques for
optimizing Discontinuous Galerkin (DG) methods, including spectral vanishing viscosity (SVV),
positivity-preserving limiters achieved by introducing lower orders, jump penalty (JP), and filter-
ing. Their linear characteristics are examined through eigenanalysis in conjunction with mathe-
matical proofs and numerical calculations, while their nonlinear properties are investigated under
the framework of entropy stability. By examining the influence of nodal distribution, algorithmic
order, Péclet number and parameters on linear characteristics, this study summarizes the behavior
of various stabilization methods at different wavenumbers and provides a basis for the param-
eter selection of certain methods based on dispersion relation; by analyzing entropy dissipation
terms in nonlinear characteristics under the entropy-stable formulation, this study summarizes the
performance of various methods on issues such as excessive dissipation.

Keywords: Discontinuous Galerkin, spectral vanishing viscosity, positivity-preserving limiter,
jump penalty, filtering, eigenanalysis, entropy stability

1 Introduction
Discontinuous Galerkin (DG) methods are essential for numerically solving partial differential equations,
offering high-order accuracy and flexibility with complex geometries [1]. They excel in parallel computing
architectures [2] but face challenges in convection-dominated flows and hyperbolic conservation laws,
often resulting in numerical instability and non-physical solutions [3]. While DG methods with smooth
solutions ensure accuracy and stability [4], practical computations involving shocks and discontinuities
pose stability challenges.

High-order methods often encounter instability due to the Gibbs phenomenon, which causes numer-
ical oscillations when approximating discontinuities. Therefore, additional stabilization techniques are
necessary [5]. Early stabilization techniques from spectral methods introduced exponential dissipation
to the high-order energy spectrum [6], and filters were widely applied in spectral and DG methods [7, 8].
Classical stabilization strategies like WENO limiters [9], slope limiters [1], and extremum limiters [10]
often cause excessive dissipation and accuracy loss as they act post-emergence of oscillations. Recent
approaches apply filters directly to the differential operator to mitigate discontinuity effects earlier [11].
Spectral Vanishing Viscosity (SVV) is a powerful stabilization method using filters to generate weak
solutions mathematically, allowing flexible control of viscosity strength at different orders [12]. Widely
employed in spectral methods, SVV effectively suppresses numerical oscillations near shocks and im-
proves the resolution of under-resolved features [13]. SVV emerged as an early proven tool for nonlinear
problems and is extensively applied in fluid dynamics models [14]. It combines various forms of artificial
viscosity to enhance solution physicality [15]. Stabilization methods must enhance stability while pre-
serving physicality and accuracy. Physicality requires additional dissipation only where discontinuities or
lack of smoothness exist, vanishing elsewhere. Methods like filtering and SVV rely on artificially set shock
sensors, which may erase high-order features. A classical approach is the penalty method, initially used
in spectral methods to enforce boundary conditions weakly [16, 17]. In DG formulations, the penalty
method effectively exists within numerical fluxes, adding dissipation at cell boundaries [18, 19, 20].
Positivity-preserving limiters from hybrid low-order methods offer another approach, allowing limited
oscillation control without entirely eliminating them [21]. These limiters use low-order algorithm so-
lutions to limit oscillation amplitude, maintaining accuracy while controlling dissipation [22]. Early
algorithms used empirical formulas for blending coefficients, while later research optimized parameters
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using gradient descent methods [23]. Subcell limiters with different mixing coefficients within the same
cell have also been proposed [24].

Stabilization methods for DG schemes, initially developed for handling discontinuities, are now ap-
plied to nonlinear under-resolved flows. Parameter selection, often based on empirical formulas, signif-
icantly impacts dispersion and dissipation characteristics. Eigenvalue analysis quantitatively assesses
these effects on discrete systems’ stability [25]. Classical DG methods have extensive eigenvalue anal-
ysis work, helping evaluate stabilization techniques’ effects on eigenvalue distribution [26]. Methods
like Spectral Vanishing Viscosity (SVV) [27] and Jump Penalty (JP) [28] have undergone such analysis.
Recent modal analyses assess numerical diffusion in semi-discrete systems, linking it to under-resolved
simulation levels [25]. These analyses quantify flow disturbances’ numerical characteristics [29]. Stabi-
lization methods for discontinuities have evolved alongside methods for managing nonlinearity, such as
entropy-stable methods. Errors and under-resolution are acceptable in linear systems but problematic
in hyperbolic nonlinear systems. Classical DG methods struggle with stability in approximating nonlin-
ear convective terms due to aliasing errors, necessitating additional stability conditions. Entropy-stable
methods ensure weak solutions’ uniqueness and adherence to physical entropy conditions, crucial in
handling shocks and discontinuities [30]. Entropy projection techniques mitigate aliasing errors by incor-
porating entropy variables [31]. Entropy stability has become crucial in nonlinear frameworks, guiding
the development of entropy-stable formulations across methodologies [32]. Unlike discontinuity-handling
methods, entropy stability applies only to nonlinear systems, aligning with energy stability in linearized
systems. Stabilization methods like SVV [27] and positivity-preserving limiters [33] have corresponding
entropy-stable forms. Current research focuses on dissipation, dispersion, and nonlinear characteristics
in complex flows, considering parameter selection’s impact. Despite some studies, systematic analysis
and comparative research are lacking. This research uses eigenvalue and entropy stability analysis frame-
works to systematically analyze and describe computational methods’ characteristics, guiding stability
method and parameter selection for complex flows.

2 Eigenanalysis framework
When tackling the numerical resolution of convection-diffusion equations, it is crucial to grasp the inher-
ent dispersion and dissipation properties. At the heart of many physical phenomena lies the convection-
diffusion equation, and its simplest, one-dimensional form is

ut + aux = µuxx, (1)

wherein u denotes a scalar physical quantity such as heat intensity, a denotes the velocity of convection,
and µ signifies the diffusion coefficient.

The main principle of Eigenanalysis is the von-Neumann stability analysis which evaluates the re-
sponses of a numerical scheme by postulating a solution resembling ei(kx−ωt) [34], where k is the spatial
frequency and ω is the complex temporal frequency. The real part of ω is associated with the velocity of
the waveform, whereas its imaginary part corresponds to the rate of the waveform’s decay. To discern the
interconnection between dispersion and dissipation, we take this assumed solution into the discretized
variant of the equation, which results in the relationship:

ω = ak − iµk2.

This expression sheds light on two key aspects: firstly, the real part, encapsulated as ak, reveals that the
wave’s velocity is intrinsically linked to the convection speed a, ensuring that the numerical solution is
free from additional dispersion inaccuracies; secondly, the imaginary part, denoted by −iµk2, delineates
the rate at which the wave’s amplitude reduces. This indicates that the damping is proportional to
the square of the spatial frequency. Therefore, it is evident that as the frequency increases, the wave’s
amplitude undergoes faster attenuation due to the effects of numerical diffusion.

when performing eigenanalysis on the semi-discrete form of the DG method, we consider the number
of nodes within an element as the degree of freedom, resulting in the linear system −iωu = Hu, where
u = (u0, . . . , uN )T is the solution vector, N is the order of the solution polynomial. Furthermore, the
semi-discrete problem can be expressed as the following eigenvalue problem:

det(H+ iωI) = 0 (2)

where (ωh)R = −2I(λ) reflect dispersion property, while(ωh)I = 2R(λ)reflect dissipation property.
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The matrix form of the nodal DG method for the convection-diffusion equation is as follows:

h

2
W

∂u

∂t
= QT

h (au− µq)−ETB(f̂ − f̂v),
h

2
Wq = −QT

hu+ETBû (3)

where Wmn = (ϕm, ϕn)Ĩ is an orthogonal diagonal mass matrix in nodal form according to Gaussian
integral, and (Qh)mn = (∂ϕm

∂x , ϕn)Ĩ is a nodal form stiffness matrix. E = [ E− E+ ]T , where E− and
E+ are interpolation vectors projecting from the nodes to the left and right edges. B is the edge integral
matrix, which is equal to diag(−1, 1) in a one-dimensional problem. Due to the Summation-By-Parts
(SBP) property of the DG scheme[35], QT

h +QT
h = ETBE. f̂ , f̂v, û are the numerical fluxes. In this paper,

we use upwind flux for f̂ and local discontinuous Galerkin method(LDG) for f̂v, û[36]. In eigenanalysis,
solution vectors which belong to the elements Ij−1, Ij+1 located on the left and right of Ij are defined as

u|Ij−1
= u|Ij e

−ikh, u|Ij+1
= u|Ij e

ikh (4)

Therefore, the linear system of a DG scheme can be expressed as:

h

2a

∂u

∂t
= Hu, H = −D(λ) +

2

Pe
D(−λa)D(λa) (5)

where λ, λa are upwind coefficients for the main and the auxiliary equations, Pe = ah/µ is Péclet number,
and D is a first-order derivative matrix expressed as:

D(λ) = W−1Qh +
1

2
W−1ET (I2 − λB)

[
E− −E+e

−ikh

E−e
ikh −E+

]
(6)

When filter stabilization methods are added to the DG scheme[6], the form is as follows:

H∗ = VqFPqH (7)

where Vq,Pq are the projection matrices for the nodal and the modal to convert to each other (VqPq = I
). F is a diagonal matrix, whose coefficient determines the proportion of energy retained by each mode
after filtering. For spectral vanishing viscosity method[12], the linear system comes to

H∗ = H+
2

Pe∗
DVqFSV V PqD (8)

where FSV V is a diagonal matrix, whose coefficient determines the intensity of artificial dissipation in
each mode. Pe∗ is a new Péclet number corresponding to the artificial viscosity coefficient.For SVV, we
can add the following artificial dissipation terms to the right-hand side of (??):

µa(Qhfv +ETB[[fv,f ]]) fv = LT
q

√
D(VqFSV V Pq) ∗

√
DLqqv Wqv = Qhv +ETB[[vf ]] (9)

where LT
q DLq is the orthogonal decomposition corresponding to the Jacobi matrix of the viscous term,

and ∗ represents the vanishing process. Therefore, the additional entropy on a single element is

∂∆S

∂t
= µa(v

TQhfv+vT
f B[[fv,f ]]) = µa(v

T
f Bfv,f−vTQT

h fv+vT
f B[[fv,f ]]) = µ(vT

f Bf̄v,f−fTv Wqv+fv,fB[[vf ]])

(10)
After summation over the entire computational domain, we obtain∑ ∂∆S

∂t
= −

∑
µaf

T
v Wqv (11)

Since the Jacobi matrix from qv to fv generated by the physical viscosity terms possesses positive definite,
and the core vector of SVV directly acts on the core vector after orthogonal decomposition, the total
entropy generated is evidently negative. SVV differs from general entropy-stable methods by directly
providing entropy dissipation within the cell while generally maintaining conservation at the interfaces,
which makes it an important means of controlling numerical oscillations within high-order elements.

Positivity-preserving scheme is a linear combination of high-order and low-order methods[24, 37].
Here, the low-order method uses a sub-cell finite volume scheme, where the numerical fluxes used by
both convective and viscous terms are consistent with DG methods. The result is a linear system as
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follows:

H∗ = (1−α)H+α

[
−D∗(λ) +

2

Pe
D∗(0)D∗(0)

]
, D∗(λ) = W−1


λ 1−λ

2 − 1+λ
2 e−ikh

− 1+λ
2 λ 1−λ

2
. . . . . . . . .

− 1+λ
2 λ 1−λ

2
1−λ
2 eikh − 1+λ

2 λ


(12)

where α is the blending coefficient. It can be constant for a single element, where the limiter reduces to
a classical element-wise form; alternatively it can be a matrix, where the limiter is in a sub-cell node-
wise form. Next, we operate on the right-hand side of entropy-stable method to implement stabilization
techniques that possess entropy-stable characteristics. First, for the positivity-preserving limiter, we
obtain

∂S

∂t
= vTW((1− α)

∂uH

∂t
+ α

∂uL

∂t
) (13)

It is provable that entropy stability exists for both low-order and high-order method, their total entropy
decreases steadily, and their additional entropy production is entirely dependent on the amount of low-
order method added. For a subcell positivity-preserving limiter with a diagonal blending coefficient A,
entropy stability is also ensured as∑ ∂S

∂t
= vTW((I−A)

∂uH

∂t
+A

∂uL

∂t
) = vTW

∂uH

∂t
+ vTWA(

∂uL

∂t
− ∂uH

∂t
) (14)

Since lower-order methods produce significantly higher entropy in regions where limiters are needed, an
additional entropy is∂∆S

∂t = vTWA(∂uL

∂t − ∂uH

∂t ).
Jump penalty method additionally impose overupwinding (λ > 1) or extra gradient-form dissipation

on element boundaries, gradient jump penalty (GJP)[18, 19] has the form as follows:

H∗ = H(σs) + σgW
−1(EW−1Qh)

TB

[
E− −E+e

−ikh

E−e
ikh −E+

]
D(λa) (15)

where σs = λ−1 is the over-upwinding coefficient, and σg is a dimensionless penalty coefficient.For jump
penalty method, the following gradient penalty term is added to the right-hand side of (??)

σg(EW−1Qh)
T [[qv,f ]] qv = W−1(Qhv +ETB[[vf ]]) (16)

Therefore, the additional entropy on a single element is

∂∆S

∂t
= σgv

T (EW−1Qh)
T [[qv,f ]] = σg[[qv,f ]]

TE(qv −ETB[[vf ]]) (17)

After summation over the entire computational domain, we obtain∑ ∂∆S

∂t
= −

∑
σg[[qv,f ]]

T [[qv,f ]] (18)

The results indicate that with a negative gradient jump penalty coefficient, the system can produce
positive additional throughput, which confirms that a positive coefficient is more conducive to stability.
However, since it is entirely dependent on the boundary discontinuities, careful choice of σg still improves
the algorithm’s performance while ensuring that the entire system remains entropy stable.

3 Eigenanalysis result

3.1 Results for the DG scheme with filter
Traditionally, the stabilization of DG methods is realized through a simple filtering mechanism; its
effectiveness solely hinges on the choice of an appropriate filter kernel vector. Now we want the resulting
matrix to maintain an optimal balance that conserves the high-order system’s integrity while bolstering
the system’s robustness against instability. We delve into an analysis of two distinct kernel vector
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(a) step (b) trail

Figure 1: dispersion and dissipation curves for a DG scheme with filter , where p = 7, inviscid, using
Gauss-Legendre nodes

configurations: the step function

Fk =

{
0 k > M
1 k ≤ M

(19)

and the trailing function

Fk =

{
e−α( k−M

p−M )
2p

k > M
1 k ≤ M

(20)

where M denotes the cutoff threshold for the filter, below which the modes remain unaffected, α =
− log(ϵ), ϵ representing the machine accuracy.

By comparing the performance of these kernel vectors, as illustrated in Fig.1, we observe that the
step form kernel vector takes an abrupt plunge to zero in both dispersion and dissipation curves at the
designated cutoff wavenumbers. The root of this behavior lies in the obliteration of high-order system
characteristics—a stark singularity that is inherently detrimental to the computational fidelity we strive
for. In contrast, the trailing form kernel vector demonstrates a smooth and continuous evolution except
the highest mode. Notice that the function values do not precipitously approach zero as k approaches
p, which highlights that a judiciously designed filter must conserve a substantial fraction of the high-
order modes. For filters, using Joint-mode analysis is more convenient. Although jump filters cannot
be effectively decomposed due to their singularity, the more commonly used trial filters can obtain
better high-wave number characteristics compared to primary mode analysis. Due to the fact that
step filters cause zero eigenvalues, resulting in singularities, it is not possible to extract the joint-mode
curves by decomposing in the direction of eigenvectors. This insight sheds light on the parallels between
DG methods and other finite element strategies such as the Flux Reconstruction (FR) technique, as
researchers state that the FR method can be viewed as a DG strategy equipped with a conceptual filter
[38].

3.2 Results for the DG scheme with spectral vanishing viscosity
For the vanishing viscosity method, we primarily analyze the distribution pattern of artificial viscosity
across different polynomial orders and the impact of the viscosity coefficient. Our discussion is based
on the inviscid flow with polynomial order p = 7 and the use of Gauss-Legendre nodes. We recognize
that the presence of artificial viscosity, when expressed as a linear combination independent of the actual
viscosity, does not alter the initial findings, irrespective of any variation in the Péclet number.

Artificial viscosity is allocated following the pattern outlined by the FSV V matrix, which is diagonally
structured within the modal space. Our aim is to apply artificial viscosity to higher-order modes, but
meanwhile keep it to stay minimal for lower-order modes and absent from the principal mode, so that
the intrinsic characteristics of the linear system can be preserved. Normally we resort to kernel vectors
such as the step function[12, 39, 40]:

Fk =

{
1 k > M
0 k ≤ M

(21)

the trail function:

Fk =

{
e
− (k−p)2

(k−M)2 k > M
0 k ≤ M

(22)
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(a) exponential,PSV V = 4 (b) P̂ e
∗
= 10,step

(c) P̂ e
∗
= 10,trail (d) P̂ e

∗
= 10,exponential

Figure 2: dispersion and dissipation curves for a DG scheme with SVV , where p = 7, inviscid, using
Gauss-Legendre nodes

and the exponential function:

Fk =

(
k

p

)PSV V

(23)

where M denotes the cutoff level below which modes are exempt from artificial viscosity. The non-
negative filtering parameter PSV V defaults to a step function with a threshold of 1 when set to 0.

In Figure 2, the patterns of a linear system equipped with Spectral Vanishing Viscosity (SVV) are
presented, showcasing the effects of assorted artificial viscosity configurations over a range of modes. It
is evident that the artificial Péclet numbers mirror the behavior of their real viscosity counterparts in
every scenario. Regarding the dispersion traits, increased levels of artificial viscosity apparently lead
to a minor divergence from the baseline values at lower wavenumbers; this divergence becomes further
pronounced and approaches the reference values as the wavenumbers increase. As for the dissipative
traits, artificial viscosity significantly amplifies energy loss throughout the wavenumber spectrum. When
considering the shape of the kernel vectors, the step form introduces distinct modal variations at vari-
ous wavenumbers; it is contingent upon the filter threshold, in contrast with the continuous variations
observed with the exponential form. The trailing form operates in an intermediate manner, between the
step and exponential forms.

An exponential viscosity distribution is often preferable due to its ability to induce gradual changes
in the system’s dissipation curve. Following this, we delve into the optimal selection of artificial viscosity
coefficients within the spectral viscosity elimination framework. In a linearized context, the introduction
of artificial viscosity coefficients will invariably lead to deviations from the standard physical dispersion
values. To grasp the full scope of this phenomenon, we explore a range of artificial Péclet numbers from
0.1 to 100, in conjunction with different filter parameters. This is reflected as a sudden jump at the
corresponding wavenumber within the dissipation curve. Displayed in Fig.3 is the curve of the total
variation ∆∗, indicating that even minimal high-order viscosity addition can skew the system away from
the dispersion reference values. When implementing strong viscosity to smooth out irregularities, there
is an optimal artificial Péclet number that can reduce the total variation to about 10−5. This finding
illuminates the local minima as valuable indicators for parameter selection.

To quantitatively approximate the theoretical diffusion curves, we implement the "1% rule" [41], which
defines the modified wavenumber k1% = kh

p+1 as the point where the error relative to the theoretical value
reaches 1%. The wavenumber linked to this error determines the region |k1% − ktheo| ≤ 0.01|ktheo|,
indicating the well-resolved range in simulation. We present the range of well-resolved scales according
to the 1% rule under different parameters. For dispersion properties, the k1% rapidly converges to π/2 as
the artificial viscosity coefficient decreases. The difference between different kernel vectors’ performance
lies in their behavior at higher viscosity coefficients; exponential parameter characteristics are relatively
smooth, while step-wise ones exhibit significant jumps. It is noteworthy that when the exponential
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(a) 1%rule for dispersion(step) (b) 1%rule for dispersion(exponential) (c) variation for dispersion(exponential)

(d) 1%rule for dissipation(step) (e) 1%rule for dissipation(exponential)

Figure 3: dispersion and dissipation characteristics for a DG scheme with different artificial Péclet
numbers, where p = 7,inviscid, using Gauss-Legendre nodes

parameter PSV V = 0, the kernel function degenerates into a step-wise form. Regarding dissipation
properties, for physical Peclet number, even with a very small viscosity coefficient, corresponding to a
larger artificial Peclet number P̂ e = 10, k1% is still unable to converge to the desired limit wavenumber of
3π/8, and this characteristic is independent of the choice of kernel vector. These phenomena also support
our variation analysis, which considers the bias of the numerical scheme’s dispersion relation from the
theoretical value in the range of [0, π/2], while the stabilization method exhibits an overly dissipative
behavior. Therefore, it is impossible to optimize the dissipation characteristics simultaneously with the
dispersion properties.

3.3 Results for the DG scheme with positivity-preserving limiter
The method for preserving positivity within the numerical solution is accomplished through the inte-
gration of a low order total variation diminishing (TVD) scheme. This study employs a sub-cell finite
element scheme that relies on upwind flux for solving the primary equation and central flux for the
supplementary equation. As previously discussed, the coefficients used for this blending process can be
either uniform values or variable matrices along the diagonal. The outcomes of the characteristic analysis
displayed in Fig.4 illustrate the behavior under various conditions set by the blending coefficients. The
results consistently show that regardless of the choice of coefficients, the resultant curve invariably resides
within the bounds set by the lower and higher order method, which indicates a linear amalgamation of
the two. Such a finding suggests the possibility of identifying a sub-cell approach that would allow the
dispersion characteristics to align more closely with the desired physical benchmarks.

For cases involving particular orders and node distributions, we can employ convex optimization tech-
niques to determine the blending coefficients for the sub-cells that lead to an optimal solution. These
coefficients are tailored to minimize the variation in dispersion and result in more accurate and sta-
ble numerical simulations. The DG method’s ability to blend low-order limiters plays a crucial role
in controlling the dispersion and dissipation characteristics of the solution, ensuring that it adheres to
the physical accuracy required for reliable computational predictions. Using the 1% rule, the sub-cell
positivity-preserving limiter shows superior performance. Thanks to the adjustability of the parameters,
it is easy to make the wavenumber k1%of the dispersion curve surpass π/2 and even 5π/8. After specifi-
cally iterating for optimal dispersion performance, we find that under certain extreme parameters, this
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(a) inviscid, constant (b) inviscid, random diagonal

(c) P̂ e = 50,constant (d) P̂ e = 50,random diagonal

Figure 4: dispersion and dissipation curves for a DG scheme with different blending coefficient, where
p = 7, using Gauss-Legendre nodes

value can exceed 3π/4, fully demonstrating the potential of this method.

3.4 Results for the DG scheme with jump penalty
The Jump Penalty (JP) technique plays a crucial role by harnessing the gradient and upwind terms as
stabilizing agents that complement each other. Our analysis delves into the dispersion and dissipation
properties of σs, σg, as depicted in Fig.5. We observe that the upwind term is influential at two specific
high wavenumber nodes, albeit has less impact at low wavenumbers. Our findings suggest that employing
a negative gradient jump penalty coefficient can enhance the dispersion at lower wavenumbers and
simultaneously mitigate dissipation, while maintaining stability at the higher wavenumber spectrum.

The gradient coefficient’s behavior is defined by three nodal points, with one notably approaching
π/2. Our data shows that when using one of the higher positive gradient coefficients, the dissipation
curve begins to show positive values, which is a clear signal of instability. Moreover, the necessity for
larger gradient penalty values escalates with increasing Péclet numbers. The results demonstrate that
a negative gradient jump penalty coefficient can draw both dispersion and dissipation curves closer to
the reference values at high wavenumbers, while a positive gradient jump penalty coefficient brings the
curves and reference values closer at lower wavenumbers and exhibits stronger dissipation at higher
wavenumbers.

We further scrutinize the deviations in dispersion curves from the benchmark for varying solution
penalty coefficients and gradient penalty coefficients, as illustrated in Fig.6. Certainly, suitable gradi-
ent penalty coefficients are consistently positive, and the magnitude of the solution penalty coefficient
correlates with the degree of excessive upwinding. The latter necessitates a more pronounced gradi-
ent dissipation term to achieve equilibrium. This observation underscores the increased dissipation and
serves as a cautionary note on the potential for excessive upwinding within the jump penalty approach,
emphasizing the need to adapt to the convective nature of the flow. Notice that a negative gradient
jump penalty coefficient may cause positive dissipation in the dissipation curve at high wavenumbers.
Although a negative coefficient seems to bring the dispersion curve overall closer to the reference value,
total variation analysis tells that within the range of [0, π/2], the penalty coefficients that make the curve
closest to the reference value are positive. In the analysis using the 1% rule, we find that unless a signif-
icantly large negative upwind coefficient is chosen, the k1% stays near π/2. A properly selected, smaller
negative penalty coefficient can expand the range in which the algorithm is well-resolved; however, once
the penalty coefficient becomes too large, the characteristics of the algorithm deteriorate rapidly. More-
over, the larger is the excessive upwind coefficient, the more caution is needed for the choice of negative
penalty coefficient.

In conclusion, the JP method in the DG framework requires a nuanced balance between the penalty
coefficients to optimize the numerical stability and accuracy, reflecting the intricate interplay between

8



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

(a) P̂ e = 10,upwind (b) P̂ e = 10,gradient

(c) inviscid, upwind (d) inviscid, gradient

Figure 5: dispersion and dissipation curves for a DG scheme with different penalty parameter, where
p = 7, using Gauss-Legendre nodes

(a) 1%rule for dispersion (b) 1%rule for dispersion (c) variation for dispersion

Figure 6: dispersion and dissipation characteristics for a DG scheme with different solution penalty
coefficients and gradient penalty coefficients, where p = 7, P̂ e = 100, using Gauss-Legendre nodes

dispersion, dissipation, and the convective dynamics inherent in the system.

4 Conclusion
In conclusion, we conduct a comprehensive evaluation of various stabilization techniques within the Dis-
continuous Galerkin scheme, scrutinize their behavior across a spectrum of wavenumbers, and validate
these observations through numerical computations. A structured approach to parameter selection based
on the analysis of dispersion and dissipation is promoted, and thereby provides a foundational frame-
work for optimizing DG methods. We also use entropy-stable formulations to particularly focus on the
management of entropy dissipation in relation to nonlinear characteristics, which not only advances the
understanding of the stabilization mechanisms but also enhances these techniques’ accuracy and stability
in the numerical simulation of complex fluid scenarios. The subcell positivity limiter is characterized
by its adaptability, with its dispersion and dissipation traits fully determined by blending coefficients
and strictly bounded by the features of high and low-order methods; the SVV method stands out for
its ability to introduce significant dissipation across all wavenumbers without adversely affecting disper-
sion properties; the jump penalty method uniquely optimizes both dispersion and dissipation in certain
low-order domains, although careful control of its coefficients is essential to maintain entropy stability;
filtering is highlighted with it particular limitations in the excessive loss of high-wavenumber features
leading to dispersion errors, and its challenges in ensuring entropy stability, which may precipitate pre-
mature computational failures. We look for further research on how various stabilization techniques may
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resolve specific demands in complex fluid simulations and make advancements in numerical analysis and
engineering.
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