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* In recent years, many attempts have been
reported to construct data-driven sub-grid
scale (SGS) models with deep neural
networks (DNN).

* Unlike conventional models, data-driven SGS
models are expected to inductively extract
subfilter-scale fluctuations and create

phenomenon-based models that do not ll" a, L7
contain artificial approximations or h
assumptions when trained in appropriate u(r,t)

ou; 0w 10P 0 =
Y = M O ()5 I 1) |
ot 0x; p dx; + axj( el

settings. DNN _
g Tij = T‘(W, x) /
y:output/prediction x:input data
F:model r, t: position and time =
w: weight Duraissamy et al. (2019). Annu. Rev. Fluid Mech.
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* Datadriven SGS model has been deployed based on

local approach of multilayer perceptron (MLP)*? and 100 100
non-local approach of convolutional neural network g

. . N Uy
(CNN) approach? showing a good result in predicting T
residual stress * a1,

* DNN architecture is critical in data driven SGS model
since it involve a large range of different scales of

eddies e
- %
u Tij 3 ‘
" J r = l—— y .
|| ] o0 |[] 1
CIKernel
75 = F@) )
Data driven SGS based 6 CNN Data driven SGS based on MLP
Ref:
1. Gamahara,M, Hattori, Y. (2017). Physical review fluids 3.Liu et. al. 2022) AIP Advances
2. Park,Jand Choi H. (2021). J. Fluid mech. 4.Saura, N and Gomez, T. (2023). EPL
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* Multi-scale nature of turbulence vortices — involve a range of vortices scale

* The multi-scale CNN is separating the input to several representation focusing
on different scale and progressively encode information from coarser to the
finest scale.
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Il. Analysis object & problem setting
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Objective

To investigate whether the new multi-scale CNN
model can extract features of turbulence
vortices of various scales and how the algorithm
affects the prediction accuracy of the residual
stresses.

Ref
1. lllaramendi, et. al. (2022). Data centric engineering
2. Fukami, et. al. {2020). Theor. Comput. Fluid Dyn
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A Prioritest
DNN model
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lll. Preparation of training dataset
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Dataset preparation: DNS data

Governing Equation

0% gz iy 0 28 5. I8
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Reynolds number (Re; = u.;6/v): 180

Computational setup

Grid arrangement: collocated grid

Time marching: 2nd-order Adams-Bashforth method
Convection & viscous terms: 2nd-order central difference
Coupling of u & p: fractional step method

Computational domain

Variable Value
Ly/8x Ly/8 X L,/ 4Tt X 2 X 210
Ax™t x Ay,;alX x Azt 11.8x54x7.1

Ny X Ny, x N, 192 x 128 x 160
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Dataset preparation: Filtering

* The dataset for training DNN model is
obtained from high fidelity DNS data
through filtering process.

* Filtering process will decompose the
grid-scale (f) and subgrid-scale (f”)
components that match the LES grid.
The box filter

_(1/8 (xl<4/2)
G(")‘{o (1xl > 4/2)

is used.

A: filter size
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1. Okabayashi, K. (2016). Journal of Fluid Science and Technology
2.Kim et. al. (1987). Journal of Fluid Mechanics
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IV. Framework of data-driven turbulence model
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The choice of input and output features

* It can be assumed that residual stress may be written as a functional strain and rotation
rate tensor as:

\,a'wahara M,
Prakash et. al. (2022). Comput.

DNV = T(DU,Q )

* Previous studies'*** found that a_xl- is the mostinfluential variable rather than Bij and
e j
Qlj-

* Including % as an input, the data-driven SGS model will satisfy Galilean invariance.
j
* The scalar value of distance from the wall information (y) is provided to give model
robustness. Therefore, the data driven SGS model is defined as

PO o i o% y aw;
Y axj ¢ a—l] : Velocity gradient tensor
. . _ S D;; : Rate-of-strain tensor
* Label data is obtained as Ty T MMy U ﬁij’ : Rotational rate tensor
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* CNN algorithm is chosen since it provides the advantages of extracting features while
preserving location information — provides robustness against spatial invariance.

* To deal with interaction between multiscale phenomena on 3D turbulent flow, 3D CNN
algorithm is employed

* The output of each layer are defined as: l(],z

. ..$D o> : : : " o1 _ |19]2s
i M o 2|3 37|43

s=1 =2 «> s=¢q
N input kernel output

cC M N M, N: height and width of filter
016). Deep learning. MIT Press ) _ Z Z Z (s) (s-1) C: number of feature map/channel: 16

. w. of. Flui d\’ochan cs Vol 52 xl]k WonkcXi+m— G,j+n—G,c G: offset/padding
). Data centricengineering c=1m=0n=0 s: layerindex
. Fluid Mech.

q, k: number of layer and kernel
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* To accurately approximate the multi-scale nature of turbulence vortices, physical processes between
the scales are attempted to be incorporated.

* The input variable will be down-sampled into half and quarter size in which similar with filtering
operation. The quarter-scale focuses on largest eddies scale which is the dominant feature while the
full-scale retain all eddies scale information. The information from coarsest scale to the finest scale will

be progressively encoded ensuring the transfer energy process. The resulting output of each process is
concatenated in the final layer

D Downsampling e [ L [

r,f, L:;;:m (] upsampling _)__, D | i | eeom || i}_
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* The loss function consist of data-based loss (L), 3.0
physics constrained loss (£,,), and regularization 55
loss (£,.).
L=Ly+L,+L, 20
* The average value of 7,3 and 7,5 are very low, & Lo
making the nonlinear regression of DNN model E 310
hard to be reconstructed.
0.5
* The constant f is introduced to magnify the
influence of 7,3 and 7,3. Therefore, L is e
described as: -0.5 | S S S S E S S—
g 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
_ V6 j vN s
Ly = Zj=1(ﬁ i=1 (Vi Yi)) y/d
The average value of Tjj over stream and spanwise
yi: label/truth data (7;) direction w.r.t channel height
¥: output/predicted data
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Loss function (2)
* To satisfy the physical condition, physics constraint loss function (£,,) is
introduced by adding the physical data of filtered velocity.

* Regularization loss (£,.) is applied to avoid overfitting. Thus, the total loss
function is defined as:

L= [’d + Lp + [’T
N Lg: Loss data-based

6 N 6 N
ﬁj - 1 ~ 1 L,,: Loss physics-based
L= Z NZ(Yl -y |+ Z Nz 0y =) |+ AN Z WLZ Lf: Loss regularization
=1 i=1 =1 =

i=1 w: weight
Xx:input
B, 6: constant
Yai is calculate from fDNS data, denote as y,; = U;U; — U;U; Yi: label/truth data (z;;)
Whereby in the calculation, the data of velocities will be embedded, not 7;; y: output/predicted data
A: regularization constant
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V. Target for comparison
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* To investigate the performance of multiscale model, the comparison between the
conventional CNN (“mono-scale CNN”) and U-net! is carried out.

N S LU

Mono-scale CNN

Ref:
1. lllaramendi, et. al. (2022). Data centric engineering
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VI. Result of a priori test
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Ref: Gholamy, A., et. al. (2018) Why 70/30 or 80/20 Relation between Training and Osaka University
Testing Sets: A Pedagogical Explanation. Departmental Technical Reports (CS)

Training and test

* Dataset for training and test

Graduate School of Engineering
Department of Mechanical Engineering

* Input data: field of%,y (distance from walls)
J

* Label data: field of 7;; = w;u; — w;u;
* Amount of input: 10,000 instantaneous fDNS data (out of 0 < t <

120). 8,000 for training data and 2,000 for test data.

* Correlation coefficient

fDNS fDNS p P 7P : Predicted data
(@@, — (T, NG — TN J
CC[TiijNS, TZ] = 4 2 = 4 Til;-DNS : Label data
DNS DNS . i
\/(((Tlf; — <Tlf] ))2) \/<((T5 _ (Tllj))z) (. ). domain average
ICCFD 12 2024
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Correlation coefficient (1)

High correlation value (averaged in the : spanwise, streamwise, and wall normal direction)
implies successful learning.

Multi-scale CNN provided most successful as CC value exceeds 0.8 for all 7;; component.

* In mono-scale CNN, CC < 0.8 on 75, and 7,3 component while only 7,; and 7;,
componentare yielded CC > 0.8 for U-net.

This result provides that multi-scale CNN predicts the residual stress more accurate than
other models.

CC
CC ‘r.f-DNS, P T T T T T T
[73; il 11 22 33 12 13 23 e

/PN, (DNS data

Multi-scale CNN 0.931 0.860 0.886 0.913 0.881 0.803 0.879 llg .
Ty predicted value

Mono-scale CNN 0.900 0.793 0.842 0.867 0.832 0.723 0.826

U-net 0.869 0.756 0.797 0.822 0.776 0.659 0.780
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Correlation coefficient (2)

* 7,4 is the easiest component to resolve as it given higher CC value for all model.

* The difficulties to resolve 7,5 and 7,5 are noted on Refs.%2. By applying present loss
function, it helps the DNN model to effectively resolved 7,5 and 7,5.

* Present result has a better CC value than Refs.'%3, yielding that physical constrain loss
function help the model to increase the correlation value.

DNS _p CcC
cCle/; VTis T T T T T T
[ ij U] 11 22 33 12 13 23 average
Multi-scale CNN 0.931 0.860 0.886 0.913 0.881 0.803 0.879
FDNS
7;;  :fDNSdata
Mono-scale CNN 0.900 0.793 0.842 0.867 0.832 0.723 0.826 7 "
HE predicted value
U-net 0.869 0.756 0.797 0.822 0.776 0.659 0.780
Re
1 Gamahara,M, Hattori, Y. (2017). Physical review fluids
Park,J and C Fluid mech
Bose, R, Roy., A ngineering Applications of Artificial Intelligence 128
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Ref:

* The averaged CC value over span and R e e il i
streamwisew.r.t y T is plotted. i
* The result shows the superiority of
multi-scale CNN on achieving better 08
result than that of mono-scale CNNand _
U-net. ;; o
* In general, all models provide almost °§04
constant CC value on y* > 5. This N
constant result can be regarded as the (7l
ability of DNN model to effectively —
predict the residual stress in a whole oQ ¢ T s & @ % 3 5 B
domain and will not be degraded in y*
specific region. /P, (NS data
7}: predicted value
ICCFD 12 2024 23
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* On the viscous sublayer region, y* < 5, all model correlation was decreased especially near
the wall.

* This results are in contrast with local approach of Refs.?3, meaning that local approach MLP
has a better ability to predict near the wall since it maps the information locally. Meanwhile,
non-local CNN approach is given more robust result on the whole domain.

1.0 71
1.0
0.8 1
L ]
0.8 B
¥ 06 1
— ] lz’
¥ 06 ’//,////a 3=
= L2
& g 04 fDNS
~ 1)
G o4 ri{’- :fDNS data
— Ty predicted value
0.2 - Monoscale F:E;
— Multiscale
—— Unet 0.0 + - - - - - v v
0.0 - - - - 0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0
10 2 30 40 Y
yt
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Wall-normal distribution of t;;

The wall-normal distribution and the
averaged t;; is investigated.

The 74, predicted from the multi-scale
CNN is obviously closer to fDNS compared
to the conventional mono-scale CNN and
U-Net.

By having higher average value, 7,4 is
considerably easier component to be
learned by nonlinear regression model of
data-driven model.

ICCFD 12

Wall-normal distribution of 7;;
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Conversely, due to the small average value, 7,3 and 7,3 are difficult to approximate.

Both mono-scale and U-net algorithms overpredict the 7,3 and 7,5.

Meanwhile, the multi-scale CNN has been successfully predicting those values adequately.
This result showed that the ability of multi-scale on extracting small value or small scales

interaction.
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Model performance on value distribution

Osaka University

The frequency distribution of the prediction and fDNS.
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Overall, all models have been struggling to predict ‘outliner’ data shown on yellow circle, indicating the
limitation of model. However, compared to mono-scale and U-net, multi-scale is considerably better as
it can resolve 7;; and low value of 7,5 adequately. It yielded that multi-scale is more effectively to
capture and resolve the dynamics complexity of turbulent field

Visualizations
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Spatial distribution of 7,, and 7,5 are depicted above. It shows that multi-scale can resolve
residual stress accurately on high value of 7,;. On the low value of 7,3, multi-scale has slightly
outperformed mono-scale and U-net. Both mono-scale and U-net show relatively similar result

on T4, and struggle in 7,3
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* The multi-scale model outperforms both the mono-scale and U-net
models in resolving 7;;, demonstrating superior capability in extracting
important flow features.

* This model is accurately constructing 7;; within different regions,
including the viscous sublayer, viscous wall, and outer layer, indicating its
robustness in capturing varied flow dynamics while maintaining high CC
value

* The investigation of 71, and 7,3 describes the multi-scale model's
proficiency in resolving both large and small scales, highlighting its
effectiveness in capturing the complete spectrum of turbulent structures.

ICCFD 12 2024 29
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* The progressive encoding of features from coarser to finer scales facilitates
the incorporation of the energy transfer process between scales,
resembling the energy cascade mechanism in turbulent flows.

* This step is crucial as it ensures that the multi-scale model effectively
captures the intricate details of energy distribution across scales.

* By extracting features from large, intermediate, and small eddies, the
multi-scale model provides the DNN with comprehensive information,
enabling it to construct accurate nonlinear regression models for resolving

Tij'
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VIl. Conclusion

ICCFD 12 2024

Osaka University
Graduate School of Engineering

COﬂCl USIOn Department of Mechanical Engineering

* The multi-scale model outperforms mono-scale and U-net models in resolving 7;;,

effectively extracting key flow features across the viscous sublayer, viscous wall, and outer
layer regions.

* By progressively encoding features from coarser to finer scales, it captures the energy
transfer process, akin to the energy cascade, ensuring comprehensive detail retention for
accurate predicting residual stress.

* This approach enhances the model's ability to capture both large and small scales feature,
demonstrating its proficiency in non-linear regression model of DNN.
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