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In the field of high-energy-density physics, understanding material behavior under non-
equilibrium conditions is essential. Traditional hydrodynamic simulations, relying on 
predefined equations of state (EOS), often fail to capture the complex phenomena that 
occur far from equilibrium. This paper presents an alternative approach using a 
continuum-atomistic framework that concurrently couples macroscopic and microscopic 
length and time scales. By integrating the Finite Element Method (FEM) with Molecular 
Dynamics (MD) simulations, we investigate and enhance the predictive capabilities of 
material modeling, particularly under extreme conditions. We validate the approach by 
comparing to experimental and first-principle data, conduct a performance analysis and 
present an example of shock-driven flows in copper. 
 
Introduction 
 
To accurately predict fluid flows, understanding the behavior of materials over a wide range 
of conditions is essential. Particularly within high-energy-density physics, the deviation from 
equilibrium conditions largely reflects in the reaction of a material. These conditions often 
arise in extreme environments such as those found in inertial confinement fusion experiments 
(1). Traditionally, hydrodynamic simulations are used, but heavily rely on predefined 
equations of state (EOS) to capture the reaction of the underlying medium. These EOS 
describe the relationship between thermodynamic variables such as pressure, temperature, 
volume, and density. Their accuracy can be severely limited when materials are pushed far 
from their equilibrium states. This limitation arises as EOS are generally derived under the 
assumption of thermodynamic equilibrium. 
 
The modeling of nonequilibrium behavior in materials is thus a major challenge in 
hydrodynamic simulations. The equation of state is coupled to the conservation equations for 
mass, momentum, and energy, and ensures that changes in density, pressure, and internal 
energy are consistently reflected across these equations. For example, a widely used equation 
of state in hydrodynamic simulations is the Mie-Grüneisen EOS (2) (3). Its parameters are 
derived from experimental measurements or computational simulations, thus restricting itself 
to near-equilibrium conditions. It therefore cannot adequately model nonequilibrium 
processes. Current state-of-the-art EOS designs counteract this by using the experimental 
and/or simulation results to choose functional forms for phase-dependent free energies (4). 
This allows for highly accurate multiphase EOS in a wider range, but still cannot guarantee 
accuracy when materials deviate significantly from the conditions under which their EOS 
was created. 
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It can be, however, a necessity to guarantee accuracy in these regimes. Nonequilibrium 
effects are often responsible for crucial processes such as energy dissipation and entropy 
production in turbulence (5), or phase transitions (6). In fact, nonequilibrium processes have 
been shown to lead to kinetic stabilization of metastable phases (7). These metastable phases 
can significantly influence transport coefficients in continuum mechanics. Understanding 
nonequilibrium effects is therefore essential to advance our description of the behavior of 
matter, and promises to greatly enhance the accuracy of computational fluid dynamics. Since 
analytical equations of state lack the atomic-level detail, alternative approaches for 
simulating materials under extreme conditions are needed.  
 
One such approach is the equation-free method, which offers a powerful and flexible 
framework to bridge the gap between microscopic dynamics and macroscopic behavior 
without relying on explicit macroscopic equations (8) (9) (10) (11). By leveraging 
microscopic simulations, such as molecular dynamics or kinetic Monte Carlo methods, the 
equation-free approach informs the macroscopic state of a system. Thus, it bypasses the 
challenging or impractical derivation of an equation. The method is defined through 
iteratively lifting and restricting the system. The lifting operator translates macroscopic flow 
variables to microscopic states, and the restricting operator summarizes the microscopic 
results to update the macroscopic variables. Between the two operators, the system is evolved 
in the microscopic domain. Using these operators, a variety of sub-models can be assembled 
into a multi-scale model (12). 
 
Therefore, the equation-free approach lifts the restrictions imposed onto an analytical 
equation of state. The responsibility to accurately model the material behavior is passed onto 
the microscopic dynamics. For nonequilibrium processes, especially for phase transitions, a 
molecular perspective has proven essential (6). Methods such as density functional theory 
(DFT) and quantum Monte Carlo (QMC) replicate material properties in detail by describing 
electronic structures. However, they require vast computational resources and are limited to 
small systems on short timescales. In contrast, molecular dynamics (MD) simulations can 
efficiently handle larger systems and longer timescales, a necessity when bridging to 
macroscopic domains. MD has also been shown to accurately capture complex phase 
transitions far from equilibrium (7). It is therefore the most performant option for the 
microscopic solver. By leveraging the strengths of MD, the equation-free approach ensures 
that the macroscopic predictions are based on atomistic interactions. 
 
This paper presents the use of MD to capture nonequilibrium effects and inform a 
hydrodynamic simulation of its influence. We introduce a continuum-atomistic framework 
that concurrently couples macroscopic and microscopic simulations. Based on the equation-
free approach, we bypass the formulation of an equation of state in hydrodynamic 
simulations. To achieve this, we introduce a series of operators to translate between the 
macroscopic and microscopic domain. We employ MD simulations to capture the atomistic 
behavior of the underlying material, and use the findings to update our macroscopic 
simulation. The concurrent continuum-atomistic framework contributes to more accurately 
simulate matter at extreme conditions, such as those found in inertial confinement fusion. 



 ICCFD12

Twelfth International Conference on        
Computational Fluid Dynamics (ICCFD12), 
Kobe, Japan, July 14-19, 2024	

ICCFD12-2024-xxxx 

 

 3 

Methodology 
 
The Macroscopic Model 
 
The Euler equations provide a great case study for this research as they find a broad range of 
applications, such as vortex dynamics, wave formation and shock physics (13). Part of 
continuum mechanics, they encompass the equations for conservation of mass, momentum, 
and energy. A general treatment of the Euler equations is done using numerical schemes. 
Three main approaches are used in computational fluid dynamics: the finite difference 
method (FDM), the finite volume method (FVM), and the finite element method (FEM). 
 
FDM’s implementation is computationally efficiency and often straightforward, but it is 
challenged by unstructured grids and thus more complex geometries (13). FVM improves 
upon this limitation by using control volumes of various shapes. Nevertheless, it has 
significant computational overhead and a complex application of boundary conditions (14). 
FEM is highly accurate with unstructured grids and varying boundary conditions, and proves 
powerful for complex material properties and deformations. Mitigations to major weaknesses 
of FEM, such as its computational cost and complexity, are increasingly available (15) (16). 
Therefore, the finite element discretization scheme is suitable for a wide range of problems. 
This work uses the higher-order FEM Lagrangian hydrodynamics solver Laghos (16). Laghos 
is an open-source solver developed by the Lawrence Livermore National Laboratory (17).  
 
The Microscopic Model 
 
Atomistic simulations such as MD track individual atoms or molecules and their interactions 
for a deterministic evolution of the flow field by solving Newton's equations of motion. In 
MD simulations, the positions and velocities of atoms and molecules are updated over time 
by numerically integrating these equations. The forces that act on the particles result from 
interatomic potentials and external force fields. The simulation starts by initializing the 
positions and velocities of all particles. The force between each particle is then evaluated, and 
positions and velocities are updated. Various properties like temperature, pressure, and 
energy are obtained throughout the simulation by averaging the position and velocity of each 
particle (18). While it inherently captures the time and length scales of atomistic processes, 
computational advances have led to a bridge into experimentally observable time and length 
scales (19). MD thus provides a dynamic picture of molecular systems and enables the 
observation of diffusion, phase transitions, and other macroscopic properties in real time.  
 
We use the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) (20). It 
has a wide range of numerical integrators, interatomic potentials, and boundary conditions, 
and seamlessly scales from a single CPU to supercomputer architectures, which makes it 
particularly suitable for our approach. Despite these advances in microscopic modeling, it 
remains impractical to bridge molecular dynamics to hydrodynamic scales in both time and 
space. A coupled approach promises to maintain atomistic detail while simulating flow fields 
at the scales typically needed by engineering applications. 
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FEM-MD Coupling 
 
To achieve this, many approaches have been developed. An excellent summary describing 
each in detail is provided by Lee & Basaran (21). Generally, these can be categorized into 
two main methods, shown in Figure 1. The handshake region approach combines MD and the 
finite element method by creating an overlapping region between the two domains. Within 
this region, MD particles and FEM nodes exactly overlap. This overlapping area typically 
spans a distance equal to the cutoff distance of the interaction potential used in the MD 
region, ensuring that all particles in the transition zone have a complete set of neighbors 
within their interaction range. The handshake region ensures consistent forces between both 
domains by considering the interaction with their neighbors through the MD interaction 
potential while also calculating nodal forces in the FEM mesh. Forces and displacements are 
thus consistently transferred between the MD and FEM regions. To conserve mass within the 
region, the mass of each node is set to the mass of the corresponding MD particle. 
Additionally, both the MD and FEM regions typically use the same numerical integration 
scheme. (22) 

 
The advantage of a direct physical continuum-atomistic coupling in the handshake approach 
has proven successful in a wealth of cases (21) (22) (23) (24) (25). Its implementation is 
often straightforward, as the region is predefined in space. However, this introduces 
significant limitations. A fixed region where the coupling shall occur requires prior 
knowledge of areas of physical importance, which may not always be available. In addition, 
the overlap between particles and nodes constraints the FEM simulation to MD length and 
time scales. To assure numerical stability in FEM, hydrodynamic scales can only be 
recovered far from the handshake region. Furthermore, forces must be evaluated twice for 
both the MD domain as well as the FEM mesh for each point in space, introducing significant 
computational costs. 
 
 

Figure 1: Two main FEM-MD coupling approaches exist. The handshake region (left) overlaps atomic 
particles and continuum nodes to pass information, while indirect approaches (right) use support 
simulations. 
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The indirect coupling approach provides a solution to many of these issues. One indirect 
coupling is the atomistic finite element method (AFEM). It uses MD as the driver code and 
employs the finite element method as a support simulation. By continually running an MD 
simulation, the AFEM captures atomic-level processes very well. It dramatically improves 
the accuracy of continuum FEM, as it accounts for multibody interactions. For cases where 
such detail is not required, it bridges into the continuum FEM domain through the translation 
of particles into nodes (26). This has the advantage of summarizing the actions of many 
particles into fewer nodes, which speeds up the computation time significantly. It also 
eliminates artificial interface errors often encountered in the handshake region. The coupling 
can also occur at any temporal and spatial point throughout the domain, lifting a critical 
restriction of the handshake region. The essence of this approach lies in the indirect 
connection between the two domains, and a variety of cases have shown the success of the 
indirect approach (26) (27) (28). However, given that MD is used as the driver code, it still 
limits all applications to near-atomistic scales. 
 
Equation-Free Equation of State Coupling 
 
We present a computational framework that bridges from atomistic to hydrodynamic scales 
by coupling MD to the finite element method. Part of the indirect approaches, we design 
FEM as the primary solver and invoke MD simulations when atomic-level detail is desired. 
The results are used to update material properties, such as stress, in the FEM domain. This 
effectively bypasses the equation of state evaluation. Figure 2 displays the main workflow of 
the approach. 

The method is comprised of two principal operators. The lifting operator translates 
macroscopic variables, such as density and internal energy, into microscopic counterparts like 
the number density and atom velocities. It is responsible for initializing the MD simulation 
with an atomic configuration that accurately reflects the macroscopic state. Any particle 
method is fully defined through position, velocity and interatomic potential, so the lifting 
operator ensures that all three are met accurately. The MD simulation can then be run. Upon 

Figure 2: The equation-free EOS coupling uses the lifting operator to initialize a microscopic instance and 
the restricting operator to inform the macroscopic domain of material properties. 
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completion, the restricting operator summarizes the detailed microscopic information back 
into macroscopic flow variables used in FEM. In the case of hydrodynamic simulations, the 
material reaction is reflected in the stress tensor. The restricting operator updates the stress 
tensor based on the atomic-scale computes.  
 
We implement the method in Laghos. Throughout every integration step, it calls a material 
model to obtain the stress tensor at current conditions. It is within this call that an instance of 
LAMMPS is created. The lifting operator initiates a microscopic simulation that runs 
concurrently, and the restricting operator returns the resulting stress tensor to Laghos.  
 
Results 
 
For validation purposes, an excellent material candidate is copper. Copper has well-
documented experimental and theoretical data for a broad range of conditions and exhibits 
nonequilibrium effects under strong compression (7). We used the embedded atom method 
(EAM) interatomic potential created by Mishin et al. (29). Mishin’s EAM potential has been 
widely adapted in the literature (7). As extreme conditions show large deviations in both 
pressure and temperature, our validation study must span these conditions. The calculation of 
the melting curve of copper ensures that a wide range of temperatures and pressures are 
tested, and supplies a quantitative measure to validate against. We obtain the melting curve 
using the Heat Until Melt (HUM) method, which gradually increases the temperature of a 
system until it transitions from a solid to a liquid phase as shown in Figure 3 for 100 GPa.  
 
We compare the melting curve with experimental data of Tan et al. (30) and first-principles 
MD calculations of Baty et al. (31). Figure 4 shows that our automated MD method obtains 
general agreement. The quantum molecular dynamics data (blue) shows minimal deviations 
from our results at pressures below 50 GPa. More significant differences are observed at 
higher pressures, but the experimental data of Tan et al. (black) is matched very well in this 
domain. In addition, previous works have reported artifacts of the Mishin potential in the 
same range, indicating that the interatomic potential (rather than the method) is the cause of 
the discrepancies (32). Excellent agreement is once again observed at pressures above 200 
GPa, with deviations of less than 3%. 

4400.0	K	

Figure 3: Using the HUM method, we found that a discontinuity in the atomic volume occurs at a 
temperature of approximately 4400 K, indicating that a phase transition likely occurs at this 
temperature. 
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In addition to validity, a performant coupling is key for the practicality of our method. While 
the lifting and restricting operators perform algebraic calculations to set and retrieve data, the 
microscopic solver constitutes the majority of the workload. Efficiency in this step is crucial, 
and a determining factor of its performance is the number of atoms in the domain. To assist 
the effort of the MD simulation, we tested various system sizes to determine the minimum 
number of atoms necessary for accurate results. 

 
Figure 5 shows the melting 
temperature obtained at a 
pressure of 150 GPa for 
various system sizes. We 
observe unphysical behavior 
for systems smaller than 400 
atoms. Strong fluctuations in 
the volume-temperature plots 
(such as Figure 3) fail to 
identify a melting point, 
deeming such small systems 
useless. Acceptable deviations 
are first observed for systems 
of 500 atoms, which show a 
7.2% error. Error margins 

below 1% are observed for systems of 5000 atoms or more. The system’s ability to capture 
the relevant physics highly depends on the physical behavior that is at play. It is also worth 
noting that the choice in system size should consider the availability of computational 
resources, which sees a direct correlation with accuracy in this case. 

Figure 4: The melting curve of copper at various pressures is compared to experimental data 
(black) and first principles MD simulations (blue). General agreement is observed with slight 
deviations at lower pressures. 

Figure 5: The system size analysis shows that fewer than 400 atoms 
fail to produce consistent results, 500 atoms show a 7.2% error, and 
systems with 5000 atoms or more achieve errors below 1%. 
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Shock Wave Simulation 
 
We apply our method to simulate shock-driven flows, as they are characterized by large 
deviations from equilibrium. The simulation setup compares two scenarios: a FEM 
simulation with an analytical EOS and our FEM-MD concurrently coupled approach. Both 
cases use copper at an initial density of 𝜌 = 8.9 !

"#!, an initial pressure gradient of Δ𝑃 = 170 
GPa and an internal energy of 𝑒 = 20 kJ. Figure 6 shows the onset of the induced velocity 
field by the shock wave at 𝑡 = 1	𝜇𝑠. The top graph displays the use of an analytical EOS, and 
bottom graph shows the coupled FEM-MD method. In the analytical case, we observed a 
distinct onset of induced velocity and its evolution throughout the domain. This behavior is 
qualitatively matched by the FEM-MD approach. Quantitative agreement is seen in the shock 
wave’s velocity magnitude, indicating that the FEM-MD approach, and especially the lifting 
and restricting operators, are functioning correctly. A difference in perturbation speed is 
observed, as the analytical case induces a higher velocity throughout the domain than the 
FEM-MD approach. This indicates a different sound speed prediction, a direct consequence 
of the equation of state. A possible cause of the deviation is that the copper parameters used 
in the analytical equation of state and the Mishin interatomic potential were obtained from 
different sources. To expect an exact agreement between the two methods requires an 
analytical equation of state derived from the same parameters as the interatomic potential. 
This is subject to future work. 

 
Conclusion 
 
We presented a novel framework for coupling the Finite Element Method with MD, enabling 
simulations that bridge between microscopic and macroscopic scales. The approach bypasses 
traditional equations of state, relying on atomistic simulations to describe material behavior. 
The automated coupling uses lifting and restricting operators that lift spatial and temporal 
scale limitations. The concurrent integration of MD into a hydrodynamic code is a major 
contribution to the field. Since particle simulations can readily be subject to large fluctuations 

Figure 6: A shock wave induces a velocity field. We analyzed its 
behavior using an analytical EOS (top) and MD-coupled approach 
(bottom). 
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and errors if one chooses inaccurate procedures, such as thermostatting (33), a validation 
study is conducted. We then demonstrated the coupling using a shock-driven flow simulation. 
General agreement with an analytical EOS comparison suggests that our approach is a 
valuable addition to modeling techniques for non-equilibrium hydrodynamics. Its 
computational performance was optimized through a performance analysis, which suggests 
that microscopic systems should be of at least 500 atoms. While this research focuses on 
high-energy-density physics, the continuum-atomistic framework can be applied to a wide 
range of fields, including aerospace engineering, nanotechnology, and materials science. 
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