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Abstract: The Direct Discontinuous Galerkin (DDG[1]) method and a counterpart with Interface Cor-
rection (DDGIC[2]) are extended to compute viscous terms that arise when solving the compressible
Navier-Stokes equations in thermo-chemical nonequilibrium. The DG formulation is solved on 3D un-
structured grids. Thermodynamic properties, transport properties, chemical reaction rates, and energy
exchange terms are computed using Mutation++[3]. A method for determining the homogeneity tensor
of the flow equations required for DDGIC is shown. A number of numerical experiments are conducted
to assess the accuracy and performance of the method. The numerical results indicate that DDG and
DDGIC provide accurate solutions and perform well for general flows in thermo-chemical nonequilibrium.

1 Introduction

Discontinuous Galerkin (DG) methods are a subset of finite element methods which have garnered signif-
icant interest in CFD applications for their accuracy, flexibility, and robustness in advection dominated
problems. The discretization of elliptical terms, however, becomes a complex issue due to derivatives
being multivalued at element interfaces. Taking the simple average of the derivatives at the interface
on either side is unstable. There are many methods to solve this problem, such as: interior penalty
methods, local discontinuous Galerkin, and the methods of Bassi and Rebay; these are all described in
detail by Arnold et al [4]. In 2009, Liu and Yan published the direct discontinuous Galerkin (DDG)
method [1]; unlike previous approaches, this method doesn’t require recasting the second order deriva-
tives as a system of first order derivatives. This makes code design and flux computation much simpler.
DDG, however, doesn’t achieve (k + 1) order of convergence for k-order polynomials when k is an even
number; to combat this, Liu and Yan [5] introduced an interface correction, which has been extended to
the 2D Navier-Stokes equations by Danis and Yan [2]. In this work, the original DDG method and the
DDG with Interface Correction (DDGIC) method of Danis and Yan is extended to three dimensions and
reacting flows in thermo-chemical non-equilibrium.

Vector Symbols:
U vector of conservative quantities
F v

j fluxes due to viscous effects
F c

j convective fluxes
S chemical source terms

Physical Quantities

ρs density of species s
E total specific energy
p pressure
T temperature
qj heat flux in direction j
ω̇s mass rate of production of species s
Ds diffusion coefficient for species s
κ heat conductivity
xj the spatial Cartesian coordinate
Ys species mass fraction ρs

ρ

eV,s vibrational energy of species s

Ω̇V
s

vibrational energy production and
relaxation for species s

ns number of species

ρ mixture density
(∑

s
ρs

)
e internal specific energy
EV vibrational specific energy
ui velocity component in direction xi

TV vibrational temperature
τij shear stress tensor
hs enthalpy of species s
qV j vibrational heat flux
Jsj species diffusion flux for species s
µ mixture dynamic viscosity
κV vibrational heat conductivity
t time

Ω̇s

energy production
for species s
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2 Problem Statement

2.1 Governing Equations

Consider the 3D, compressible, reacting, multispecies, Navier-Stokes equations:

∂U

∂t
+

∂F c
j(U)

∂xj
=

∂F v
j (U ,∇U)

∂xj
+ S(U) (1)

Where:

U =



ρ1
...

ρns
ρui

ρE
ρEV


, F c

j =



ρ1uj

...
ρnsuj

ρuiuj + pδij
uj(ρE + p)
ukρEV


, F v

j =



−J1,j
...

−Jns,j
τij

uiτij + qj −
∑
s
hsJs,j

qV j −
∑
s
eV,sJs,j


, S =



ω̇1

...
ω̇ns

0
0

Ω̇V
s


(2)

The total density ρ is defined such that:

ρ =
ns∑
s=1

ρs (3)

The shear stress tensor and heat flux vectors are computed by:

τij = µ
( ∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
µ
∂ul

∂ul
δij , qj = −κ

∂T

∂xj
− κV

∂TV

∂xj
, qvj = −κV

∂TV

∂xj
(4)

The equation of state is closed using the ideal gas law:

p = ρRT (5)

The total specific energy (E) is related to the internal specific energy (e) by the addition of kinetic energy

E = e+
1

2

∑
j

ujuj (6)

The species diffusion fluxes are computed using a modified form of Fick’s Law to conserve mass [6]:

Js,j = ρ
(
−Ds

∂Ys

∂xj
+ Ys

ns∑
l=1

Dl
∂Yl

∂xj

)
(7)

The thermodynamic properties (such as species enthalpies hs), transport properties (including viscosity
µ, thermal conductivities κ and κV , and average diffusion coefficients Ds), chemical source terms (ω̇s),
and energy exchange term (Ω̇V ) are computed using Mutation++ [3].

3 Numerical Methods

Introduce the broken Sobolev space over the equation domain Ω ⊂ R3

V s,p(Ω) = {v ∈ Lp(Ω) : ∀|α| ≤ s,Dαv ∈ Lp(Ω)} (8)

Let Th represent a triangulation of Ω with non-overlapping elements K. Let Γ = ∂K represent the
element interfaces and nj represent the jth component of the outward unit normal vector. Then define
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the semi-discrete weak form of the governing equations over the elements K:

∂

∂t

∫
K
Uv dK −

∫
K
F c

j(U)
∂v

∂xj
dK +

∫
Γ

F̂
c

j(U)vnj dΓ =

−
∫
K
F v

j (U ,∇U)
∂v

∂xj
dK +

∫
Γ

F̂
v

j (U ,∇U)vnj dΓ +

∫
K
Sv dK ∀v ∈ V s,p(Ω) (9)

The interface convective flux F̂
c

j is calculated using HLLC [7] or LDFSS [8] while the interface viscous

flux F̂
v

j is calculated using one of the two DDG methods.

3.1 Original DDG

The original DDG flux prescribes a method for determining the gradients of quantities at the interface
from the corresponding left and right values, gradients, and second derivatives. Consider a quantity ϕ
that has two states at a disontinuous cell interface (ϕ+ and ϕ− respectively) as well as the respective
gradients and second derivatives. Define the jump and average operators as follows:

JϕK = ϕ+ − ϕ−, ϕ =
ϕ+ + ϕ−

2
(10)

Then the DDG gradient of the quantity is:

∂̂ϕ

∂xj
= β0

JϕK
∆

nj +
∂ϕ

∂xj
+ β1∆

r ∂2ϕ

∂xi∂xj

z
ni (11)

Where βi are coefficients as prescribed by Liu and Yan [1]; this is dependent on the polynomial order of
the approximation. In this work, for DG(P1), the value β0 = 1.7 is used. For kth order polynomials,
Danis and Yan [2] choose β0 = k2 for the heat equation and β0 = (k+1)2 for the Navier-Stokes equations.
Note: for even polynomial orders this will not achieve (k + 1) order of convergence. It is possible to
recover the (k + 1) convergence order by using kth order derivatives of the solution and corresponding
coefficients as outlined by Liu and Yan [5]. However, this is better remedied by the interface correction.
The characteristic distance ∆ is calculated at each quadrature point using a dimension agnostic strategy
outlined by Cheng et al. [9] using the centroids of the left and right element domains c− and c+

respectively, the quadrature point coordinates qΓ, and the unit normal vector n. This is illustrated in
Figure 1.

∆ = |qΓ − c−| · n+ |qΓ − c+| · n (12)

c− c+

n
qΓ

|qΓ−
c− |

Figure 1: Calculation of Characteristic width ∆

The DDG gradients can be evaluated component-wise for vector quantities to obtain a vector of
gradients that is single valued at the interface.

∇̂U =
∂̂U

∂xj
= β0

JUK
∆

nj +
∂U

∂xj
+ β1∆

r ∂2U

∂xi∂xj

z
ni (13)

Then the numerical flux is computed using the DDG derivatives and the average quantities at the

3
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interface as:

F̂
v

j = F v
j (U , ∇̂U) (14)

3.2 DDGIC

Danis and Yan [2] define DDGIC for nonlinear homogeneous fluxes. This means that the flux can be
written in the form:

F j(U ,∇U) = G(U)∇U (15)

In addition, the diffusion tensor G is assumed to be positive definite. For clarity, this will sometimes be
written in index notation:

Fik(U ,∇U) = Gikrs(U)
∂Ur

∂xs
(16)

3.2.1 Computation of Diffusion Tensor

Klaij, Van der Vegt, and Van der Ven [7] provide an explicit version of the diffusion tensor for the single-
species compresesible Navier-Stokes equations. The diffusion tensor can be calculated by differentiation
by considering the property of homogeneous functions:

∂F (U ,∇U)

∂(∇U)
= G(U) (17)

However, for more complex functions, it can be simpler and easier to verify by breaking the flux F into
components that are linear combinations of U multiplied by the gradients U . The matrix of conservative
variable derivatives can be written as:

∂Ur

∂xs
=

[
∂ρl

∂xs

∣∣∣ ∂uj

∂xs

∣∣∣ ∂ρE
∂xs

∣∣∣ ∂ρEV

∂xs

]T
l ∈ 1, ..., ns j ∈ 1, ..., d (18)

Where ns is the number of species and d is the number of spatial dimensions. It now becomes straight-
forward to write quantities that arise in the diffusion matrices in the same form as above, knowing that
the tensors will be contracted with the conservative variable gradients along the r and s indices.
The species mass fraction derivatives tensor can be written as:( ∂Yl

∂xk

)
rs

=
1

ρ

[
δskδrl − δskYl

∣∣∣ 0
∣∣∣ 0

∣∣∣ 0
]T

(19)

Visualizing the contraction with which conservative variable gradients in Equation 18 can be accom-
plished by envisioning overlaying these terms on Equation 18.
As an implementation note, the Kronecker deltas can be treated as holding those indices equal and only
looping over one of the two indices. An implementation of the species mass fraction derivatives tensor:

1 dYmat(:, :, :, :) = 0.0

2 do l = 1, ns

3 do k = 1, d

4 s = k !kroneker

5 do r = 1, ns

6 dYmat(s, r, k, l) = -Y(l) / rho

7 end do

8 r = l

9 dYmat(s, r, k, l) = dYmat(s, r, k, l) + 1.0 / rho

10 enddo

11 enddo

The species diffusion matrix for Fick’s Law can be expressed as a linear combination of the mass
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fraction derivatives tensor and conservative variables:(
Ji,k

)
rs

= −ρDi

( ∂Yi

∂xk

)
rs

+ ρYi

∑
l

Dl

( ∂Yl

∂xk

)
rs

(20)

Let ru = r − ns represent the indices corresponding to the
∂uj

∂xs
terms in Equation 18 – where ns is the

number of species. The velocity gradient tensor is:( ∂ui

∂xk

)
rs

=
1

ρ

[
−δksui

∣∣∣ δksδrui

∣∣∣ 0
∣∣∣ 0

]T
i ∈ 1, ..., d (21)

The original quantity is recovered by tensor contraction of the r and s indices:( ∂ui

∂xk

)
rs

∂Ur

∂xs
=

∂ui

∂xk
(22)

The shear stress term in its entirety can be written as:(
τij

)
rs

=
µ

ρ

[
−δjsus − δisus +

2
3δijus

∣∣∣ δjsδrui + δisδruj − 2
3δijδrus

∣∣∣ 0
∣∣∣ 0

]T
(23)

For the temperature derivatives, Gnoffo et al [10] provide equations based on the conservative variable
gradients

∂T

∂xj
=

∂e
∂xj

− ∂EV
∂xj

−
∑
s

∂Ys
∂xj

(es−EV,s)

Cv,TR
(24)

∂TV

∂xj
=

∂EV
∂xj

−
∑
s

∂Ys
∂xj

EV,s

Cv,V
(25)

Where Cv,TR and Cv,V are the specific heats for translational-rotational energy modes, and vibrational
energy modes respectively and are obtained from the conservative variables through Mutation++ [3].
The derivatives of e and EV are computed as follows:

∂e

∂xj
= 1

ρ

(
∂ρE
∂xj

− E ∂ρ
∂xj

− ul
∂ρul

∂xj
+ ||u|| ∂ρ

∂xj

)
(26)

∂EV

∂xj
= 1

ρ

(
∂ρEV

∂xj
− EV

∂ρ
∂xj

)
(27)

Where ∥u∥ =
∑
l

ulul is the velocity magnitude. Let ie and iEV
represent the indices for the energy and

vibrational energy terms. The tensors for the energy derivatives are then:( ∂e

∂xk

)
rs

=
1

ρ

[
∥u∥ − E | −δruiui | δier | 0

]
(28)(∂EV

∂xk

)
rs

=
1

ρ

[
EV | 0 | 0 | δiEV

r

]
(29)

(30)

From this the tensors for the temperature derivatives are:( ∂T

∂xj

)
rs

= 1
Cv,TR

((
∂e
∂xj

)
rs

−
(
∂EV

∂xj

)
rs

−
ns∑
l=1

(
∂Yl

∂xj

)
rs
(el − EV,l)

)
(31)(∂TV

∂xj

)
rs

= 1
Cv,V

((
∂EV

∂xj

)
rs

−
ns∑
l=1

(
∂Yl

∂xj

)
rs
EV,l

)
(32)

where el and EV,l are the species energies and vibrational energies respectively, which are computed by
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Mutation++. Finally the viscous flux tensor can be assembled by:

Gikrs(U) =



−
(
J1k

)
rs

...

−
(
J(ns)k

)
rs(

τjk

)
rs

uj

(
τjk

)
rs

− κ
(

∂T
∂xk

)
rs

− κV

(
∂TV

∂xk

)
rs

−
∑
l

hl

(
Jlk

)
rs

−κV

(
∂TV

∂xk

)
rs



(33)

3.2.2 Computation of the Viscous Fluxes and Interface Correction

The DDGIC flux uses the diffusion matrix evaluated at the average state at the interface. Recall the
definition of the diffusion matrix:

F v
ik(U ,∇U) = Gikrs(U)

∂Ur

∂xs
(34)

Then applying substituting the averages and gradients results in:

F̂ v
ik(U ,∇U) = Gikrs(U)

∂̂Ur

∂xs
(35)

The interface correction is an additional term which utilizes the direction vector ξ. This direction vector
is the interface unit normal transformed by the diffusion tensor:

ξirs = Gikrsnk (36)

Rewriting the semi-discrete weak form with the DDGIC flux and interface correction terms:

d

dt

∫
K
Uv dK −

∫
K
F c

j(U)
∂v

∂xj
dK +

∫
Γ

F̂
c

j(U)vnj dΓ = −
∫
K
F v

j (U ,∇U)
∂v

∂xj
dK

+

∫
Γ

ξirs(U)
∂Ur

∂xs
v dΓ− 1

2

∫
Γ

JUrKξirs(U)
∂v

∂xs
dΓ +

∫
K
Sv dK ∀v ∈ V s,p(Ω) (37)

4 Numerical Results

Some canonical test cases are run to compare the effectiveness of different DDG formulations with a 2nd
Order Finite Volume scheme. All formulations of the DDG schemes compute fluxes for the conservative
quantities as described above. In computing the DDG gradients as in Equation 13, two different choices

of variable sets are investigated for the original DDG method to compute the JUK and ∂U
∂xj

terms. The

first will be noted by (VT):

U (V T ) =



ρ1
...

ρns
ui

T
TV


(38)

The second is the standard conservative variable set as described in Equation 2. The LDFSS inviscid
flux is used for high speed flows.
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4.1 Multispecies Flatplate

An inert 2-species air mixture (YO2
= 0.233, YN2

= 0.767) is blown at Mach 0.2 over a flat plate with
an adiabatic wall boundary condition. This case is run with a single temperature; i.e., the vibrational
energy terms are omitted. The skin friction and y-velocity profile are compared with the analytic Blasius
solution. The y-velocity shows the benefits of using the DDG over a second-order finite volume scheme.
There is little conclusive difference between the different DDG implementations.

Figure 2: Density Contour at Front of Plate

(a) Skin Friction Coefficient Comparison

(b) y-velocity profile at x = 0.99L

Figure 3: Comparison of DDG(P1) and finite volume for flow over a flat plate

4.2 High Enlthalpy Hypersonic Cylinder

This case is modeled after Nastac et al. [11] section IV.B. High enthalpy hypersonic (M∞ ≈ 8.7) flow
around a cylinder is studied. The cylinder radius is 45 mm and the length is 380 mm. The 5 species

7
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model for air from Park et al. (1985) [12] is used for the species definition and reaction mechanisms.
Thermodynamic and transport properties are evaluated using Mutation++. A rigid-rotor harmonic
oscillator model is used for thermodynamics. Transport properties are based on collision integrals, with
the mixture-averaged viscosity computed using the Gupta-Yos approximation and thermal conductivity
using Wilke’s mixing rule.

YO2
= 0.134

YO = 0.0795

YNO = 0.0509

YN = 0.0

YN2
= 0.7356

M∞ = 8.76

P∞ = 697.038 Pa

T∞ = 694 K

TV,∞ = 694 K

The cylinder walls are an isothermal boundary condition at 300 K. The mesh used is an unadapted
hexahedral mesh with one cell in the z-direction. Results are compared with results from NASA’s DPLR
code[13] to serve as a qualitative benchmark in Figure 5. A mesh comparison is shown in Figure 6.
The DDG results are in good agreement with the computational results from DPLR. There are some
differences in shock standoff distance, maximum temperature, and maximum pressure – given that the
two codes use different discretizations and thermochemistry implementations, small differences in the
code comparison are to be expected.

The heat fluxes on the surface of the cylinder show that all the DDG schemes give good quantitative
results which closely match the experiment by Karl et al. [14].

Figure 4: Cylinder surface heat flux comparison

8
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(a) Mach Number

(b) Pressure

(c) NO Mass Fraction

(d) Vibrational Temperature

Figure 5: Results Comparison of DDG(P1) - (PV gradients) (Left) and DPLR (Right)

9
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Figure 6: Center Slice of Hexahedral mesh used (Left), 2D DPLR unadapted mesh for qualitative
comparison (Right)

Pressure, temperatures, mach number, and composition are compared along the stagnation line
(from +y to the wall) in Figure 7. There are some inconsistencies along the stagnation line, likely due
to differences in thermodynamics and transport properties. This work uses Mutation++ to compute
thermophysical properties while DPLR uses its own internal databases and methods.

(a) Pressure (b) Temperatures

(c) Species Mass Fractions (d) Mach Number

Figure 7: Stagnation Line Comparisons

4.3 High Enthalpy Hypersonic Flow Around a Hemisphere Cylinder

A primary goal of this work is to extend DDGIC to three dimensions. Therefore, we consider fully
three-dimensional hypersonic flow over a hemisphere, based on the test case outlined in Section IV.D of
Nastac et al. [11]. The same thermodynamics and chemical models are used as the previous case. Free

10
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stream conditions are:

YO2
= 0.134

YO = 0.0795

YNO = 0.0509

YN = 0.0

YN2
= 0.7356

M∞ = 9.8

P∞ = 697.038 Pa

T∞ = 450 K

TV,∞ = 450 K

The walls of the hemisphere cylinder are isothermal boundary conditions at 555.5 K. The mesh used
is too coarse to fully resolve all the flow features so this primarily serves as a qualitative verification of
3D capabilities on a fully 3D geomoetry. The results in Figure 9 are reasonable when compared to the
results in Nastac et al. [11] considering the differences in resolution. The low resolution mesh is used as
a preliminary result for the available time and computing resources.

Figure 8: Mesh of central z-normal slice of the mesh

11



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

ICCFD12-2024-0174

Figure 9: Mach number (top) and temperature (bottom) contours of the hemisphere cylinder on a central
z-normal slice of the mesh

As a quantitative comparison, in Figure 10 we compare the surface heatfluxes with the experimental
results obtained by Josyula and Shang[15] as referenced in Nastac et al. [11]. The heatfluxes follow the
general contour of the experimental data, but for true agreement with the data higher resolution of the
post-shock region is necessary.

12
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Figure 10: Surface heat fluxes along a 45 degree cutplane
with the x-coordinate normalized by the hemisphere radius.

5 Conclusions

Several implementations of DDG were extended to 3D flows with thermochemical non-equilibrium.
Derivation and implementation are presented for the interface correction term extended to thermochem-
ical nonequilibrium flows. Overall DDG is an effective scheme for flows in thermochemical equilibrium
and recovered accurate skin friction in the flatplate benchmark case and accurate heat fluxes in the high
enthalpy cylinder benchmark case.
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